14,561 research outputs found

    Endophytic Fungi of Bitter Melon \u3ci\u3e(Momordica Charantia)\u3c/i\u3e in Guangdong Province, China

    Get PDF
    Endophytic fungi can mutualistically interact with their host plants by deterring herbivores. Overall 1172 endophytic fungal isolates were recovered from roots, stems, leaves, flowers and fruits of bitter melon, Momordica charantia, at five sites in Guangdong Province. These isolates were identified to 25 genera using morphological and molecular characteristics. The endophyte communities at the five sites were similar. Alternaria alternata, Aspergillus spp., Cladosporium spp., Colletotrichum spp., Nigrospora spp., Penicillium spp., Arthrinium spp., Chaetimium spp., Curvularia spp., Fusarium spp., Phoma spp., and Phomopsis spp. were isolated from at least three of the five sites. The coefficient of similarity for endophytes ranged from 60.6% to 83.3% between any two sites. There were significant differences in the species composition of endophytes recovered from different tissues of bitter melon. Fusarium spp. was the most frequent in root and stem samples, Colletotrichum spp. in leaf samples, A. alternata in flower samples, and Cladosporium spp. in fruit samples. The coefficients of similarity for endophytes were between 42.9% and 80.0% from any two tissues. We found that the composition of endophytes of bitter melon was relatively stable across sites, but differed greatly among tissues. We also found that there were fewer insects such as aphids (Homoptera: Aphididae), leafminers (Lepidoptera, Gracillariidae), and cotton leafworms Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) collected from the leaves of bitter melon at the Huadu site compared to those collected at the Yunfu site. Whether this is related to the endophyte communities isolated from different sites requires further research

    Hybrid mesons from anisotropic lattice QCD with the clover and improved gauge actions

    Full text link
    We study hybrid mesons from the clover and improved gauge actions at β=2.6\beta=2.6 on the anisotropic 123×3612^3\times36 lattice using our PC cluster. We estimate the mass of 1+1^{-+} light quark hybrid as well as the mass of the charmonium hybrid. The improvement of both quark and gluonic actions, first applied to the hybrid mesons, is shown to be more efficient in reducing the lattice spacing and finite volume errors.Comment: Lattice2002 (spectrum

    Elevated expression of human bHLH factor ATOH7 accelerates cell cycle progression of progenitors and enhances production of avian retinal ganglion cells.

    Get PDF
    The production of vertebrate retinal projection neurons, retinal ganglion cells (RGCs), is regulated by cell-intrinsic determinants and cell-to-cell signaling events. The basic-helix-loop-helix (bHLH) protein Atoh7 is a key neurogenic transcription factor required for RGC development. Here, we investigate whether manipulating human ATOH7 expression among uncommitted progenitors can promote RGC fate specification and thus be used as a strategy to enhance RGC genesis. Using the chicken retina as a model, we show that cell autonomous expression of ATOH7 is sufficient to induce precocious RGC formation and expansion of the neurogenic territory. ATOH7 overexpression among neurogenic progenitors significantly enhances RGC production at the expense of reducing the progenitor pool. Furthermore, forced expression of ATOH7 leads to a minor increase of cone photoreceptors. We provide evidence that elevating ATOH7 levels accelerates cell cycle progression from S to M phase and promotes cell cycle exit. We also show that ATOH7-induced ectopic RGCs often exhibit aberrant axonal projection patterns and are correlated with increased cell death during the period of retinotectal connections. These results demonstrate the high potency of human ATOH7 in promoting early retinogenesis and specifying the RGC differentiation program, thus providing insight for manipulating RGC production from stem cell-derived retinal organoids

    The effect of planet-planet scattering on the survival of exomoons

    Full text link
    Compared to the giant planets in the solar system, exoplanets have many remarkable properties such as the prevalence of giant planets on eccentric orbits and the presence of hot Jupiters. Planet-planet scattering (PPS) between giant planets is a possible mechanism in interpreting above and other observed properties. If the observed giant planet architectures are indeed the outcomes of PPS, such drastic dynamical process must affect their primordial moon systems. In this Letter, we discuss the effect of the PPS on the survival of their regular moons. From the viewpoint of observations, some preliminary conclusions are drawn from the simulations. 1. PPS is a destructive process to the moon systems, single planets on eccentric orbits are not the ideal moon-search targets. 2. If hot Jupiters formed through PPS, their original moons have little chance to survive. 3. Planets in multiple systems with small eccentricities are more likely holding their primordial moons. 4. Compared to the lower-mass planets, the massive ones in multiple systems may not be the preferred moon-search targets if the system underwent a PPS history.Comment: published at ApJ

    Low-lying states in 30^{30}Mg: a beyond relativistic mean-field investigation

    Full text link
    The recently developed model of three-dimensional angular momentum projection plus generator coordinate method on top of triaxial relativistic mean-field states has been applied to study the low-lying states of 30^{30}Mg. The effects of triaxiality on the low-energy spectra and E0 and E2 transitions are examined.Comment: 6 pages, 3 figures, 1 table, talk presented at the 17th nuclear physics conference "Marie and Pierre Curie" Kazimierz Dolny, 22-26th September 2010, Polan

    Stabilization of positive switched systems with time-varying delays under asynchronous switching

    Get PDF
    This paper investigates the state feedback stabilization problem for a class of positive switched systems with time-varying delays under asynchronous switching in the frameworks of continuous-time and discrete-time dynamics. The so-called asynchronous switching means that the switches between the candidate controllers and system modes are asynchronous. By constructing an appropriate co-positive type Lyapunov-Krasovskii functional and further allowing the functional to increase during the running time of active subsystems, sufficient conditions are provided to guarantee the exponential stability of the resulting closed-loop systems, and the corresponding controller gain matrices and admissible switching signals are presented. Finally, two illustrative examples are given to show the effectiveness of the proposed methods

    Beyond relativistic mean-field studies of low-lying states in neutron-deficient krypton isotopes

    Full text link
    Neutron-deficient krypton isotopes are of particular interest due to the coexistence of oblate and prolate shapes in low-lying states and the transition of ground-state from one dominate shape to another as a function of neutron number. A detailed interpretation of these phenomena in neutron-deficient Kr isotopes requires the use of a method going beyond a mean-field approach that permits to determine spectra and transition probabilities. The aim of this work is to provide a systematic calculation of low-lying state in the even-even 68-86Kr isotopes and to understand the shape coexistence phenomenon and the onset of large collectivity around N=40 from beyond relativistic mean-field studies. The starting point of our method is a set of relativistic mean-field+BCS wave functions generated with a constraint on triaxial deformations (beta, gamma). The excitation energies and electric multipole transition strengths of low-lying states are calculated by solving a five-dimensional collective Hamiltonian (5DCH) with parameters determined by the mean-field wave functions. To examine the role of triaxiality, a configuration mixing of both particle number (PN) and angular momentum (AM) projected axially deformed states is also carried out within the exact generator coordinate method (GCM) based on the same energy density functional. The energy surfaces, the excitation energies of 0^+_2, 2^+_1, 2^+_2 states, as well as the E0 and E2 transition strengths are compared with the results of similar 5DCH calculations but with parameters determined by the non-relativistic mean-field wave functions, as well as with the available data...Comment: 23 pages, 10 figure
    corecore