24,714 research outputs found
Integrated Design and Implementation of Embedded Control Systems with Scilab
Embedded systems are playing an increasingly important role in control
engineering. Despite their popularity, embedded systems are generally subject
to resource constraints and it is therefore difficult to build complex control
systems on embedded platforms. Traditionally, the design and implementation of
control systems are often separated, which causes the development of embedded
control systems to be highly time-consuming and costly. To address these
problems, this paper presents a low-cost, reusable, reconfigurable platform
that enables integrated design and implementation of embedded control systems.
To minimize the cost, free and open source software packages such as Linux and
Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers
for interfacing Scilab with several communication protocols including serial,
Ethernet, and Modbus are developed. Experiments are conducted to test the
developed embedded platform. The use of Scilab enables implementation of
complex control algorithms on embedded platforms. With the developed platform,
it is possible to perform all phases of the development cycle of embedded
control systems in a unified environment, thus facilitating the reduction of
development time and cost.Comment: 15 pages, 14 figures; Open Access at
http://www.mdpi.org/sensors/papers/s8095501.pd
Angular Stripe Phase in Spin-Orbital-Angular-Momentum Coupled Bose Condensates
We propose that novel superfluid with supersolid-like properties - angular
stripe phase - can be realized in a pancake-like spin-1/2 Bose gas with
spin-orbital-angular-momentum coupling. We predict a rich ground-state phase
diagram, including the vortex-antivortex pair phase, half-skyrmion phase, and
two different angular stripe phases. The stripe phases feature modulated
angular density-density correlation with sizable contrast and can occupy a
relatively large parameter space. The low-lying collective excitations, such as
the dipole and breathing modes, show distinct behaviors in different phases.
The existence of the novel stripe phase is also clearly indicated in the
energetic and dynamic instabilities of collective modes near phase transitions.
Our predictions of the angular stripe phase could be readily examined in
current cold-atom experiments with Rb and K.Comment: 5+3 pages, 4+2 figure
Component Selection in the Additive Regression Model
Similar to variable selection in the linear regression model, selecting
significant components in the popular additive regression model is of great
interest. However, such components are unknown smooth functions of independent
variables, which are unobservable. As such, some approximation is needed. In
this paper, we suggest a combination of penalized regression spline
approximation and group variable selection, called the lasso-type spline method
(LSM), to handle this component selection problem with a diverging number of
strongly correlated variables in each group. It is shown that the proposed
method can select significant components and estimate nonparametric additive
function components simultaneously with an optimal convergence rate
simultaneously. To make the LSM stable in computation and able to adapt its
estimators to the level of smoothness of the component functions, weighted
power spline bases and projected weighted power spline bases are proposed.
Their performance is examined by simulation studies across two set-ups with
independent predictors and correlated predictors, respectively, and appears
superior to the performance of competing methods. The proposed method is
extended to a partial linear regression model analysis with real data, and
gives reliable results
- …