221,778 research outputs found

    An access alternative for mobile satellite networks

    Get PDF
    Conceptually, this paper discusses strategies of digital satellite communication networks for a very large number of low density traffic stations. These stations can be either aeronautical, land mobile, or maritime. The techniques can be applied to international, domestic, regional, and special purpose satellite networks. The applications can be commercial, scientific, military, emergency, navigational or educational. The key strategy is the use of a non-orthogonal access method, which tolerates overlapping signals. With n being either time or frequency partitions, and with a single overlapping signal allowed, a low cost mobile satellite system can be designed with n squared (n squared + n + 1) number of terminals

    Intrinsic electron spin relaxation due to the D'yakonov-Perel' mechanism in monolayer MoS2_2

    Full text link
    Intrinsic electron spin relaxation due to the D'yakonov-Perel' mechanism is studied in monolayer Molybdenum Disulphide. An intervalley in-plane spin relaxation channel is revealed due to the opposite effective magnetic fields perpendicular to the monolayer Molybdenum Disulphide plane in the two valleys together with the intervalley electron-phonon scattering. The intervalley electron-phonon scattering is always in the weak scattering limit, which leads to a rapid decrease of the in-plane spin relaxation time with increasing temperature. A decrease of the in-plane spin relaxation time with the increase of the electron density is also shown.Comment: 6 pages, 1 figur

    Electron spin relaxation in bilayer graphene

    Full text link
    Electron spin relaxation due to the D'yakonov-Perel' mechanism is investigated in bilayer graphene with only the lowest conduction band being relevant. The spin-orbit coupling is constructed from the symmetry group analysis with the parameters obtained by fitting to the numerical calculation according to the latest report by Konschuh {\it et al.} [Phys. Rev. B {\bf 85}, 115423 (2012)] from first principles. In contrast to single-layer graphene, the leading term of the out-of-plane component of the spin-orbit coupling in bilayer graphene shows a Zeeman-like term with opposite effective magnetic fields in the two valleys. This Zeeman-like term opens a spin relaxation channel in the presence of intervalley scattering. It is shown that the intervalley electron-phonon scattering, which has not been reported in the previous literature, strongly suppresses the in-plane spin relaxation time at high temperature whereas the intervalley short-range scattering plays an important role in the in-plane spin relaxation especially at low temperature. A marked nonmonotonic dependence of the in-plane spin relaxation time on temperature with a minimum of several hundred picoseconds is predicted in the absence of the short-range scatterers. This minimum is comparable to the experimental data. Moreover, a peak in the electron density dependence of the in-plane spin relaxation time at low temperature, which is very different from the one in semiconductors, is predicted. We also find a rapid decrease in the in-plane spin relaxation time with increasing initial spin polarization at low temperature, which is opposite to the situation in both semiconductors and single-layer graphene. ......(The remaining is cut due to the limit of space)Comment: 15 pages, 9 figures, PRB in pres
    • …
    corecore