68,036 research outputs found
Massive Complex Scalar Field in a Kerr-Sen Black Hole Background: Exact Solution of Wave Equation and Hawking Radiation
The separated radial part of a massive complex scalar wave equation in the
Kerr-Sen geometry is shown to satisfy the generalized spheroidal wave equation
which is, in fact, a confluent Heun equation up to a multiplier. The Hawking
evaporation of scalar particles in the Kerr-Sen black hole background is
investigated by the Damour-Ruffini-Sannan's method. It is shown that quantum
thermal effect of the Kerr-Sen black hole has the same characteras that of the
Kerr-Newman black hole.Comment: Revtex, 5 pages, no figure, submitted to Phys. Rev.
Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect
The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating
Kinnersley black hole is investigated by using a method of the generalized
tortoise coordinate transformation. Both the location and temperature of the
event horizon depend on the time and on the angles. They coincide with previous
results, but the thermal radiation spectrum of massless spinor particles
displays a kind of spin-acceleration coupling effect.Comment: 8 pages, no figure, revtex 4.0, revisted version with typesetting
errors and misprint correcte
Exact Solutions to Sourceless Charged Massive Scalar Field Equation on Kerr-Newman Background
The separated radial part of a sourceless massive complex scalar field
equation on the Kerr-Newman black hole background is shown to be a generalized
spin-weighted spheroidal wave equation of imaginary number order. While the
separated angular part is an ordinary spheroidal wave equation. General exact
solutions in integral forms and in power series expansion as well as several
special solutions with physical interest are given for the radial equation in
the non-extreme case. In the extreme case, power series solution to the radial
equation is briefly studied. Recurrence relations between coefficients in power
series expansion of general solutions and connection between the radial
equation are discussed in both cases.Comment: 22 Pages, in LaTex, no figure, to appear in J. Math. Phy
Extending the Energy Framework for Network Simulator 3 (ns-3)
The problem of designing and simulating optimal transmission protocols for
energy harvesting wireless networks has recently received considerable
attention, thus requiring for an accurate modeling of the energy harvesting
process and a consequent redesign of the simulation framework to include it.
While the current ns-3 energy framework allows the definition of new energy
sources that incorporate the contribution of an energy harvester, the
integration of an energy harvester component into an existing energy source is
not straightforward using the existing energy framework. In this poster, we
propose an extension of the energy framework currently released with ns-3 in
order to explicitly introduce the concept of an energy harvester. Starting from
the definition of the general interface, we then provide the implementation of
two simple models for the energy harvester. In addition, we extend the set of
implementations of the current energy framework to include a model for a
supercapacitor energy source and a device energy model for the energy
consumption of a sensor. Finally, we introduce the concept of an energy
predictor, that gathers information from the energy source and harvester and
use this information to predict the amount of energy that will be available in
the future, and we provide an example implementation. As a result of these
efforts, we believe that our contributions to the ns-3 energy framework will
provide a useful tool to enhance the quality of simulations of energy-aware
wireless networks.Comment: 2 pages, 4 figures. Poster presented at WNS3 2014, Atlanta, G
- …