6,506 research outputs found
Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material
Two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets exhibit
remarkable electronic and optical properties. The 2D features, sizable
bandgaps, and recent advances in the synthesis, characterization, and device
fabrication of the representative MoS, WS, WSe, and MoSe TMDs
make TMDs very attractive in nanoelectronics and optoelectronics. Similar to
graphite and graphene, the atoms within each layer in 2D TMDs are joined
together by covalent bonds, while van der Waals interactions keep the layers
together. This makes the physical and chemical properties of 2D TMDs layer
dependent. In this review, we discuss the basic lattice vibrations of
monolayer, multilayer, and bulk TMDs, including high-frequency optical phonons,
interlayer shear and layer breathing phonons, the Raman selection rule,
layer-number evolution of phonons, multiple phonon replica, and phonons at the
edge of the Brillouin zone. The extensive capabilities of Raman spectroscopy in
investigating the properties of TMDs are discussed, such as interlayer
coupling, spin--orbit splitting, and external perturbations. The interlayer
vibrational modes are used in rapid and substrate-free characterization of the
layer number of multilayer TMDs and in probing interface coupling in TMD
heterostructures. The success of Raman spectroscopy in investigating TMD
nanosheets paves the way for experiments on other 2D crystals and related van
der Waals heterostructures.Comment: 30 pages, 23 figure
Cost-Efficient Data Backup for Data Center Networks against {\epsilon}-Time Early Warning Disaster
Data backup in data center networks (DCNs) is critical to minimize the data
loss under disaster. This paper considers the cost-efficient data backup for
DCNs against a disaster with early warning time. Given
geo-distributed DCNs and such a -time early warning disaster, we
investigate the issue of how to back up the data in DCN nodes under risk to
other safe DCN nodes within the early warning time constraint,
which is significant because it is an emergency data protection scheme against
a predictable disaster and also help DCN operators to build a complete backup
scheme, i.e., regular backup and emergency backup. Specifically, an Integer
Linear Program (ILP)-based theoretical framework is proposed to identify the
optimal selections of backup DCN nodes and data transmission paths, such that
the overall data backup cost is minimized. Extensive numerical results are also
provided to illustrate the proposed framework for DCN data backup
Monolayer Molybdenum Disulfide Nanoribbons with High Optical Anisotropy
Two-dimensional Molybdenum Disulfide (MoS2) has shown promising prospects for
the next generation electronics and optoelectronics devices. The monolayer MoS2
can be patterned into quasi-one-dimensional anisotropic MoS2 nanoribbons
(MNRs), in which theoretical calculations have predicted novel properties.
However, little work has been carried out in the experimental exploration of
MNRs with a width of less than 20 nm where the geometrical confinement can lead
to interesting phenomenon. Here, we prepared MNRs with width between 5 nm to 15
nm by direct helium ion beam milling. High optical anisotropy of these MNRs is
revealed by the systematic study of optical contrast and Raman spectroscopy.
The Raman modes in MNRs show strong polarization dependence. Besides that the
E' and A'1 peaks are broadened by the phonon-confinement effect, the modes
corresponding to singularities of vibrational density of states are activated
by edges. The peculiar polarization behavior of Raman modes can be explained by
the anisotropy of light absorption in MNRs, which is evidenced by the polarized
optical contrast. The study opens the possibility to explore
quasione-dimensional materials with high optical anisotropy from isotropic 2D
family of transition metal dichalcogenides
What Can Online Doctor Reviews Tell Us? A Deep Learning Assisted Study of Telehealth Service
The present study develops a novel deep learning method which assists text mining of online doctor reviews to extract underlying sentiment scores. Those scores can be used to estimate a healthcare service quality model to investigate how the online doctor reviews impact the online doctor consultation demand. Based on the data from the largest online health platforms in China, our model results show that the underlying sentiment scores have statistically significant impacts on the demand of online doctor consultation. Theoretically, the present study constructs an innovative deep learning algorithm with a better performance than four widely used text mining methods, which can be applied to text mining of many online forums or social media texts. Empirically, our model results show what factors impact the health service quality and online doctor consultation demand, and following those factors, healthcare professionals can improve their service
Value of superb microvascular imaging ultrasonography in the diagnosis of carpal tunnel syndrome: Compared with color Doppler and power Doppler.
The aim of this study was to compare the value of superb microvascular imaging (SMI) in carpal tunnel syndrome (CTS) with that of color Doppler ultrasonography (CDUS) and power Doppler ultrasonography (PDUS).Fifty patients with symptomatic CTS and 25 healthy volunteers were enrolled. The cross-sectional area (CSA), CDUS score, PDUS score, and SMI score of the median nerve (MN) at the carpal tunnel were recorded. The value of different ultrasonography (US) diagnostic strategies was calculated.The blood flow display ratio in the MN of the healthy volunteers had no statistical difference between CDUS, PDUS, and SMI (20%, 32%, and 48%, respectively, Pâ\u3e.05). The blood flow display ratio for SMI in patients was significantly higher than that of CDUS and PDUS (90%, 52%, and 60%, respectively,
- âŠ