922 research outputs found
Visual Dynamics: Stochastic Future Generation via Layered Cross Convolutional Networks
We study the problem of synthesizing a number of likely future frames from a
single input image. In contrast to traditional methods that have tackled this
problem in a deterministic or non-parametric way, we propose to model future
frames in a probabilistic manner. Our probabilistic model makes it possible for
us to sample and synthesize many possible future frames from a single input
image. To synthesize realistic movement of objects, we propose a novel network
structure, namely a Cross Convolutional Network; this network encodes image and
motion information as feature maps and convolutional kernels, respectively. In
experiments, our model performs well on synthetic data, such as 2D shapes and
animated game sprites, and on real-world video frames. We present analyses of
the learned network representations, showing it is implicitly learning a
compact encoding of object appearance and motion. We also demonstrate a few of
its applications, including visual analogy-making and video extrapolation.Comment: Journal preprint of arXiv:1607.02586 (IEEE TPAMI, 2019). The first
two authors contributed equally to this work. Project page:
http://visualdynamics.csail.mit.ed
Visual Dynamics: Probabilistic Future Frame Synthesis via Cross Convolutional Networks
We study the problem of synthesizing a number of likely future frames from a
single input image. In contrast to traditional methods, which have tackled this
problem in a deterministic or non-parametric way, we propose a novel approach
that models future frames in a probabilistic manner. Our probabilistic model
makes it possible for us to sample and synthesize many possible future frames
from a single input image. Future frame synthesis is challenging, as it
involves low- and high-level image and motion understanding. We propose a novel
network structure, namely a Cross Convolutional Network to aid in synthesizing
future frames; this network structure encodes image and motion information as
feature maps and convolutional kernels, respectively. In experiments, our model
performs well on synthetic data, such as 2D shapes and animated game sprites,
as well as on real-wold videos. We also show that our model can be applied to
tasks such as visual analogy-making, and present an analysis of the learned
network representations.Comment: The first two authors contributed equally to this wor
Physical Primitive Decomposition
Objects are made of parts, each with distinct geometry, physics,
functionality, and affordances. Developing such a distributed, physical,
interpretable representation of objects will facilitate intelligent agents to
better explore and interact with the world. In this paper, we study physical
primitive decomposition---understanding an object through its components, each
with physical and geometric attributes. As annotated data for object parts and
physics are rare, we propose a novel formulation that learns physical
primitives by explaining both an object's appearance and its behaviors in
physical events. Our model performs well on block towers and tools in both
synthetic and real scenarios; we also demonstrate that visual and physical
observations often provide complementary signals. We further present ablation
and behavioral studies to better understand our model and contrast it with
human performance.Comment: ECCV 2018. Project page: http://ppd.csail.mit.edu
Stochastic Prediction of Multi-Agent Interactions from Partial Observations
We present a method that learns to integrate temporal information, from a
learned dynamics model, with ambiguous visual information, from a learned
vision model, in the context of interacting agents. Our method is based on a
graph-structured variational recurrent neural network (Graph-VRNN), which is
trained end-to-end to infer the current state of the (partially observed)
world, as well as to forecast future states. We show that our method
outperforms various baselines on two sports datasets, one based on real
basketball trajectories, and one generated by a soccer game engine.Comment: ICLR 2019 camera read
Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids
Real-life control tasks involve matters of various substances---rigid or soft
bodies, liquid, gas---each with distinct physical behaviors. This poses
challenges to traditional rigid-body physics engines. Particle-based simulators
have been developed to model the dynamics of these complex scenes; however,
relying on approximation techniques, their simulation often deviates from
real-world physics, especially in the long term. In this paper, we propose to
learn a particle-based simulator for complex control tasks. Combining learning
with particle-based systems brings in two major benefits: first, the learned
simulator, just like other particle-based systems, acts widely on objects of
different materials; second, the particle-based representation poses strong
inductive bias for learning: particles of the same type have the same dynamics
within. This enables the model to quickly adapt to new environments of unknown
dynamics within a few observations. We demonstrate robots achieving complex
manipulation tasks using the learned simulator, such as manipulating fluids and
deformable foam, with experiments both in simulation and in the real world. Our
study helps lay the foundation for robot learning of dynamic scenes with
particle-based representations.Comment: Accepted to ICLR 2019. Project Page: http://dpi.csail.mit.edu Video:
https://www.youtube.com/watch?v=FrPpP7aW3L
The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision
We propose the Neuro-Symbolic Concept Learner (NS-CL), a model that learns
visual concepts, words, and semantic parsing of sentences without explicit
supervision on any of them; instead, our model learns by simply looking at
images and reading paired questions and answers. Our model builds an
object-based scene representation and translates sentences into executable,
symbolic programs. To bridge the learning of two modules, we use a
neuro-symbolic reasoning module that executes these programs on the latent
scene representation. Analogical to human concept learning, the perception
module learns visual concepts based on the language description of the object
being referred to. Meanwhile, the learned visual concepts facilitate learning
new words and parsing new sentences. We use curriculum learning to guide the
searching over the large compositional space of images and language. Extensive
experiments demonstrate the accuracy and efficiency of our model on learning
visual concepts, word representations, and semantic parsing of sentences.
Further, our method allows easy generalization to new object attributes,
compositions, language concepts, scenes and questions, and even new program
domains. It also empowers applications including visual question answering and
bidirectional image-text retrieval.Comment: ICLR 2019 (Oral). Project page: http://nscl.csail.mit.edu
A Comparative Evaluation of Approximate Probabilistic Simulation and Deep Neural Networks as Accounts of Human Physical Scene Understanding
Humans demonstrate remarkable abilities to predict physical events in complex
scenes. Two classes of models for physical scene understanding have recently
been proposed: "Intuitive Physics Engines", or IPEs, which posit that people
make predictions by running approximate probabilistic simulations in causal
mental models similar in nature to video-game physics engines, and memory-based
models, which make judgments based on analogies to stored experiences of
previously encountered scenes and physical outcomes. Versions of the latter
have recently been instantiated in convolutional neural network (CNN)
architectures. Here we report four experiments that, to our knowledge, are the
first rigorous comparisons of simulation-based and CNN-based models, where both
approaches are concretely instantiated in algorithms that can run on raw image
inputs and produce as outputs physical judgments such as whether a stack of
blocks will fall. Both approaches can achieve super-human accuracy levels and
can quantitatively predict human judgments to a similar degree, but only the
simulation-based models generalize to novel situations in ways that people do,
and are qualitatively consistent with systematic perceptual illusions and
judgment asymmetries that people show.Comment: Accepted to CogSci 2016 as an oral presentatio
Self-Supervised Intrinsic Image Decomposition
Intrinsic decomposition from a single image is a highly challenging task, due
to its inherent ambiguity and the scarcity of training data. In contrast to
traditional fully supervised learning approaches, in this paper we propose
learning intrinsic image decomposition by explaining the input image. Our
model, the Rendered Intrinsics Network (RIN), joins together an image
decomposition pipeline, which predicts reflectance, shape, and lighting
conditions given a single image, with a recombination function, a learned
shading model used to recompose the original input based off of intrinsic image
predictions. Our network can then use unsupervised reconstruction error as an
additional signal to improve its intermediate representations. This allows
large-scale unlabeled data to be useful during training, and also enables
transferring learned knowledge to images of unseen object categories, lighting
conditions, and shapes. Extensive experiments demonstrate that our method
performs well on both intrinsic image decomposition and knowledge transfer.Comment: NIPS 2017 camera-ready version, project page:
http://rin.csail.mit.edu
Ambient Sound Provides Supervision for Visual Learning
The sound of crashing waves, the roar of fast-moving cars -- sound conveys
important information about the objects in our surroundings. In this work, we
show that ambient sounds can be used as a supervisory signal for learning
visual models. To demonstrate this, we train a convolutional neural network to
predict a statistical summary of the sound associated with a video frame. We
show that, through this process, the network learns a representation that
conveys information about objects and scenes. We evaluate this representation
on several recognition tasks, finding that its performance is comparable to
that of other state-of-the-art unsupervised learning methods. Finally, we show
through visualizations that the network learns units that are selective to
objects that are often associated with characteristic sounds.Comment: ECCV 201
- …