5,727 research outputs found
Improper Ferroelectric Polarisation in a Perovskite driven by Inter-site Charge Transfer and Ordering
It is of great interest to design and make materials in which ferroelectric
polarisation is coupled to other order parameters such as lattice, magnetic and
electronic instabilities. Such materials will be invaluable in next-generation
data storage devices. Recently, remarkable progress has been made in
understanding improper ferroelectric coupling mechanisms that arise from
lattice and magnetic instabilities. However, although theoretically predicted,
a compact lattice coupling between electronic and ferroelectric (polar)
instabilities has yet to be realised. Here we report detailed crystallographic
studies of a novel perovskite
HgMnMnO that is
found to exhibit a polar ground state on account of such couplings that arise
from charge and orbital ordering on both the A' and B-sites, which are
themselves driven by a highly unusual Mn-Mn inter-site charge
transfer. The inherent coupling of polar, charge, orbital and hence magnetic
degrees of freedom, make this a system of great fundamental interest, and
demonstrating ferroelectric switching in this and a host of recently reported
hybrid improper ferroelectrics remains a substantial challenge.Comment: 9 pages, 7 figure
Higher superconducting transition temperature by breaking the universal pressure relation
By investigating the bulk superconducting state via dc magnetization
measurements, we have discovered a common resurgence of the superconductive
transition temperatures (Tcs) of the monolayer Bi2Sr2CuO6+{\delta} (Bi2201) and
bilayer Bi2Sr2CaCu2O8+{\delta} (Bi2212) to beyond the maximum Tcs (Tc-maxs)
predicted by the universal relation between Tc and doping (p) or pressure (P)
at higher pressures. The Tc of under-doped Bi2201 initially increases from 9.6
K at ambient to a peak at ~ 23 K at ~ 26 GPa and then drops as expected from
the universal Tc-P relation. However, at pressures above ~ 40 GPa, Tc rises
rapidly without any sign of saturation up to ~ 30 K at ~ 51 GPa. Similarly, the
Tc for the slightly overdoped Bi2212 increases after passing a broad valley
between 20-36 GPa and reaches ~ 90 K without any sign of saturation at ~ 56
GPa. We have therefore attributed this Tc-resurgence to a possible
pressure-induced electronic transition in the cuprate compounds due to a charge
transfer between the Cu 3d_(x^2-y^2 ) and the O 2p bands projected from a
hybrid bonding state, leading to an increase of the density of states at the
Fermi level, in agreement with our density functional theory calculations.
Similar Tc-P behavior has also been reported in the trilayer
Br2Sr2Ca2Cu3O10+{\delta} (Bi2223). These observations suggest that higher Tcs
than those previously reported for the layered cuprate high temperature
superconductors can be achieved by breaking away from the universal Tc-P
relation through the application of higher pressures.Comment: 13 pages, including 5 figure
A generalized Gaussian process model for computer experiments with binary time series
Non-Gaussian observations such as binary responses are common in some
computer experiments. Motivated by the analysis of a class of cell adhesion
experiments, we introduce a generalized Gaussian process model for binary
responses, which shares some common features with standard GP models. In
addition, the proposed model incorporates a flexible mean function that can
capture different types of time series structures. Asymptotic properties of the
estimators are derived, and an optimal predictor as well as its predictive
distribution are constructed. Their performance is examined via two simulation
studies. The methodology is applied to study computer simulations for cell
adhesion experiments. The fitted model reveals important biological information
in repeated cell bindings, which is not directly observable in lab experiments.Comment: 49 pages, 4 figure
Mutations in the PKM2 exon-10 region are associated with reduced allostery and increased nuclear translocation.
PKM2 is a key metabolic enzyme central to glucose metabolism and energy expenditure. Multiple stimuli regulate PKM2's activity through allosteric modulation and post-translational modifications. Furthermore, PKM2 can partner with KDM8, an oncogenic demethylase and enter the nucleus to serve as a HIF1α co-activator. Yet, the mechanistic basis of the exon-10 region in allosteric regulation and nuclear translocation remains unclear. Here, we determined the crystal structures and kinetic coupling constants of exon-10 tumor-related mutants (H391Y and R399E), showing altered structural plasticity and reduced allostery. Immunoprecipitation analysis revealed increased interaction with KDM8 for H391Y, R399E, and G415R. We also found a higher degree of HIF1α-mediated transactivation activity, particularly in the presence of KDM8. Furthermore, overexpression of PKM2 mutants significantly elevated cell growth and migration. Together, PKM2 exon-10 mutations lead to structure-allostery alterations and increased nuclear functions mediated by KDM8 in breast cancer cells. Targeting the PKM2-KDM8 complex may provide a potential therapeutic intervention
- …