4,377 research outputs found
Alternating Back-Propagation for Generator Network
This paper proposes an alternating back-propagation algorithm for learning
the generator network model. The model is a non-linear generalization of factor
analysis. In this model, the mapping from the continuous latent factors to the
observed signal is parametrized by a convolutional neural network. The
alternating back-propagation algorithm iterates the following two steps: (1)
Inferential back-propagation, which infers the latent factors by Langevin
dynamics or gradient descent. (2) Learning back-propagation, which updates the
parameters given the inferred latent factors by gradient descent. The gradient
computations in both steps are powered by back-propagation, and they share most
of their code in common. We show that the alternating back-propagation
algorithm can learn realistic generator models of natural images, video
sequences, and sounds. Moreover, it can also be used to learn from incomplete
or indirect training data
On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
This study investigates the effects of Markov chain Monte Carlo (MCMC)
sampling in unsupervised Maximum Likelihood (ML) learning. Our attention is
restricted to the family of unnormalized probability densities for which the
negative log density (or energy function) is a ConvNet. We find that many of
the techniques used to stabilize training in previous studies are not
necessary. ML learning with a ConvNet potential requires only a few
hyper-parameters and no regularization. Using this minimal framework, we
identify a variety of ML learning outcomes that depend solely on the
implementation of MCMC sampling.
On one hand, we show that it is easy to train an energy-based model which can
sample realistic images with short-run Langevin. ML can be effective and stable
even when MCMC samples have much higher energy than true steady-state samples
throughout training. Based on this insight, we introduce an ML method with
purely noise-initialized MCMC, high-quality short-run synthesis, and the same
budget as ML with informative MCMC initialization such as CD or PCD. Unlike
previous models, our energy model can obtain realistic high-diversity samples
from a noise signal after training.
On the other hand, ConvNet potentials learned with non-convergent MCMC do not
have a valid steady-state and cannot be considered approximate unnormalized
densities of the training data because long-run MCMC samples differ greatly
from observed images. We show that it is much harder to train a ConvNet
potential to learn a steady-state over realistic images. To our knowledge,
long-run MCMC samples of all previous models lose the realism of short-run
samples. With correct tuning of Langevin noise, we train the first ConvNet
potentials for which long-run and steady-state MCMC samples are realistic
images.Comment: Code available at: https://github.com/point0bar1/ebm-anatom
Gate-Tunable Tunneling Resistance in Graphene/Topological Insulator Vertical Junctions
Graphene-based vertical heterostructures, particularly stacks incorporated
with other layered materials, are promising for nanoelectronics. The stacking
of two model Dirac materials, graphene and topological insulator, can
considerably enlarge the family of van der Waals heterostructures. Despite well
understanding of the two individual materials, the electron transport
properties of a combined vertical heterojunction are still unknown. Here we
show the experimental realization of a vertical heterojunction between Bi2Se3
nanoplate and monolayer graphene. At low temperatures, the electron transport
through the vertical heterojunction is dominated by the tunneling process,
which can be effectively tuned by gate voltage to alter the density of states
near the Fermi surface. In the presence of a magnetic field, quantum
oscillations are observed due to the quantized Landau levels in both graphene
and the two-dimensional surface states of Bi2Se3. Furthermore, we observe an
exotic gate-tunable tunneling resistance under high magnetic field, which
displays resistance maxima when the underlying graphene becomes a quantum Hall
insulator
Modeling the pulse signal by wave-shape function and analyzing by synchrosqueezing transform
We apply the recently developed adaptive non-harmonic model based on the
wave-shape function, as well as the time-frequency analysis tool called
synchrosqueezing transform (SST) to model and analyze oscillatory physiological
signals. To demonstrate how the model and algorithm work, we apply them to
study the pulse wave signal. By extracting features called the spectral pulse
signature, {and} based on functional regression, we characterize the
hemodynamics from the radial pulse wave signals recorded by the
sphygmomanometer. Analysis results suggest the potential of the proposed signal
processing approach to extract health-related hemodynamics features
- …