6,191 research outputs found

    A Comparative Study on Spin-Orbit Torque Efficiencies from W/ferromagnetic and W/ferrimagnetic Heterostructures

    Full text link
    It has been shown that W in its resistive form possesses the largest spin-Hall ratio among all heavy transition metals, which makes it a good candidate for generating efficient dampinglike spin-orbit torque (DL-SOT) acting upon adjacent ferromagnetic or ferrimagnetic (FM) layer. Here we provide a systematic study on the spin transport properties of W/FM magnetic heterostructures with the FM layer being ferromagnetic Co20_{20}Fe60_{60}B20_{20} or ferrimagnetic Co63_{63}Tb37_{37} with perpendicular magnetic anisotropy. The DL-SOT efficiency ∣ξDL∣|\xi_{DL}|, which is characterized by a current-induced hysteresis loop shift method, is found to be correlated to the microstructure of W buffer layer in both W/Co20_{20}Fe60_{60}B20_{20} and W/Co63_{63}Tb37_{37} systems. Maximum values of ∣ξDL∣≈0.144|\xi_{DL}|\approx 0.144 and ∣ξDL∣≈0.116|\xi_{DL}|\approx 0.116 are achieved when the W layer is partially amorphous in the W/Co20_{20}Fe60_{60}B20_{20} and W/Co63_{63}Tb37_{37} heterostructures, respectively. Our results suggest that the spin Hall effect from resistive phase of W can be utilized to effectively control both ferromagnetic and ferrimagnetic layers through a DL-SOT mechanism

    Distributed Training Large-Scale Deep Architectures

    Full text link
    Scale of data and scale of computation infrastructures together enable the current deep learning renaissance. However, training large-scale deep architectures demands both algorithmic improvement and careful system configuration. In this paper, we focus on employing the system approach to speed up large-scale training. Via lessons learned from our routine benchmarking effort, we first identify bottlenecks and overheads that hinter data parallelism. We then devise guidelines that help practitioners to configure an effective system and fine-tune parameters to achieve desired speedup. Specifically, we develop a procedure for setting minibatch size and choosing computation algorithms. We also derive lemmas for determining the quantity of key components such as the number of GPUs and parameter servers. Experiments and examples show that these guidelines help effectively speed up large-scale deep learning training

    Signs of outflow feedback from a nearby young stellar object on the protostellar envelope around HL Tau

    Full text link
    HL Tau is a Class I-II protostar embedded in an infalling and rotating envelope and possibly associated with a planet forming disk, and it is co-located in a 0.1 pc molecular cloud with two nearby young stellar objects. Our ALMA observations revealed two arc-like structures on a 1000 au scale connected to the disk, and their kinematics could not be explained with any conventional model of infalling and rotational motions. In this work, we investigate the nature of these arc-like structures connected to the HL Tau disk. We conducted new observations in the 13CO and C18O (3-2; 2-1) lines with JCMT and IRAM 30m, and obtained the ACA data with the 7-m array. With the single-dish, ACA, and ALMA data, we analyzed the gas motions on both 0.1 pc and 1000 au scales in the HL Tau region. We constructed new kinematical models of an infalling and rotating envelope with the consideration of relative motion between HL Tau and the envelope. By including the relative motion between HL Tau and its protostellar envelope, our kinematical model can explain the observed velocity features in the arc-like structures. The morphologies of the arc-like structures can also be explained with an asymmetric initial density distribution in our model envelope. In addition, our single-dish results support that HL Tau is located at the edge of a large-scale (0.1 pc) expanding shell driven by the wind or outflow from XZ Tau, as suggested in the literature. The estimated expanding velocity of the shell is comparable to the relative velocity between HL Tau and its envelope in our kinematical model. These results hints that the large-scale expanding motion likely impacts the protostellar envelope around HL Tau and affects its gas kinematics. We found that the mass infalling rate from the envelope onto the HL Tau disk can be decreased by a factor of two due to this impact by the large-scale expanding shell.Comment: Accepted by A&

    DYNAMICAL EFFECTS OF SPRINT START ON DIFFERENT STARTING BLOCKS

    Get PDF
    The purpose of this study was to examine the dynamical variables of sprint start in two different starting blocks setups. The ReacTime Personal Systems was used to record the Reaction Time (RT) and the Power of 20 teenaged sprinters (15 males and 5 females) in the sprint start. In addition, the Newtest Powertimer photocells were used to collect subjects’ 0 to 10 metre (T10) performance after the sprint start. The variables were tested by the repeated measures one-way ANOVA by SPSS 19.0 statistical software at a .05 significant level. The results showed that there were better effects on the short starting block (SB) in power generation performance than the long starting block (LB). The athletes can apply short starting block and make adjustments and modifications based on their training conditions
    • …
    corecore