111,311 research outputs found
Intense terahertz laser fields on a two-dimensional electron gas with Rashba spin-orbit coupling
The spin-dependent density of states and the density of spin polarization of
an InAs-based two-dimensional electron gas with the Rashba spin-orbit coupling
under an intense terahertz laser field are investigated by utilizing the
Floquet states to solve the time-dependent Schr\"odinger equation.
It is found that both densities are strongly affected by the terahertz laser
field. Especially a terahertz magnetic moment perpendicular to the external
terahertz laser field in the electron gas is induced. This effect can be used
to convert terahertz electric signals into terahertz magnetic ones efficiently.Comment: 3 pages, 3 figures, a typo in Fig. 3(b) is correcte
Authorization and access control of application data in Workflow systems
Workflow Management Systems (WfMSs) are used to support the modeling and coordinated execution of business processes within an organization or across organizational boundaries. Although some research efforts have addressed requirements for authorization and access control for workflow systems, little attention has been paid to the requirements as they apply to application data accessed or managed by WfMSs. In this paper, we discuss key access control requirements for application data in workflow applications using examples from the healthcare domain, introduce a classification of application data used in workflow systems by analyzing their sources, and then propose a comprehensive data authorization and access control mechanism for WfMSs. This involves four aspects: role, task, process instance-based user group, and data content. For implementation, a predicate-based access control method is used. We believe that the proposed model is applicable to workflow applications and WfMSs with diverse access control requirements
Recommended from our members
Two-phase flow and oxygen transport in the perforated gas diffusion layer of proton exchange membrane fuel cell
Liquid water transport in perforated gas diffusion layers (GDLs)is numerically investigated using a three-dimensional (3D)two-phase volume of fluid (VOF)model and a stochastic reconstruction model of GDL microstructures. Different perforation depths and diameters are investigated, in comparison with the GDL without perforation. It is found that perforation can considerably reduce the liquid water level inside a GDL. The perforation diameter (D = 100 μm)and the depth (H = 100 μm)show pronounced effect. In addition, two different perforation locations, i.e. the GDL center and the liquid water break-through point, are investigated. Results show that the latter perforation location works more efficiently. Moreover, the perforation perimeter wettability is studied, and it is found that a hydrophilic region around the perforation further reduces the water saturation. Finally, the oxygen transport in the partially-saturated GDL is studied using an oxygen diffusion model. Results indicate that perforation reduces the oxygen diffusion resistance in GDLs and improves the oxygen concentration at the GDL bottom up to 101% (D = 100 μm and H = 100 μm)
Two-phase flow dynamics in the gas diffusion layer of proton exchange membrane fuel cells: Volume of fluid modeling and comparison with experiment
This paper proposes a three-dimensional (3D) volume of fluid (VOF) study to investigate two-phase flow in the gas diffusion layer (GDL) of proton exchange membrane (PEM) fuel cells and liquid water distribution. A stochastic model was adopted to reconstruct the 3D microstructures of Toray carbon papers and incorporate the experimentally-determined varying porosity. The VOF predictions were compared with the water profiles obtained by the X-ray tomographic microscopy (XTM) and the Leverett correlation. It was found local water profiles are similar in the sample’s sub-regions under the pressure difference p = 1000 Pa between the two GDL surfaces, but may vary significantly under p = 6000 Pa. The water-air interfaces inside the GDL structure were presented to show water distribution and breakthrough
Recommended from our members
Investigating the in-/through-plane effective diffusivities of dry and partially-saturated gas diffusion layers
In this study, the effective oxygen diffusivity in the dry or partially-saturated gas diffusion layer (GDL) is numerically investigated by an oxygen diffusion model in GDLs reconstructed by a stochastic method. The predicted effective diffusivity in dry GDLs is compared with various diffusivity models from literatures. Reasonable agreements with other models were obtained. The effect of the PTFE loading in the dry Toray carbon paper is also investigated and compared with recent experimental data. It is found that the effective diffusivity becomes lower under higher PTFE loading due to the decreased pore volume, as expected. The relative effective oxygen diffusivity in partially-saturated GDLs is calculated using the two-phase volume of fluid (VOF) model and an oxygen diffusion model. The effects of different local water profiles and porosity distribution on the effective oxygen diffusivity in both the through-plane (TP) and in-plane (IP) directions are investigated and compared with a lattice Boltzmann model and experimental data. The present results are in good agreement with other studies. It is found that local water profile has significant impacts on the effective diffusivity in partially-saturated GDLs and the diffusivity in the TP direction is more sensitive to the water distribution than the IP direction
An overview of the VRS virtual platform
This paper provides an overview of the development of the virtual platform within the European Commission funded VRShips-ROPAX (VRS) project. This project is a major collaboration of approximately 40 industrial, regulatory, consultancy and academic partners with the objective of producing two novel platforms. A physical platform will be designed and produced representing a scale model of a novel ROPAX vessel with the following criteria: 2000 passengers; 400 cabins; 2000 nautical mile range, and a service speed of 38 knots. The aim of the virtual platform is to demonstrate that vessels may be designed to meet these criteria, which was not previously possible using individual tools and conventional design approaches. To achieve this objective requires the integration of design and simulation tools representing concept, embodiment, detail, production, and operation life-phases into the virtual platform, to enable distributed design activity to be undertaken. The main objectives for the development of the virtual platform are described, followed by the discussion of the techniques chosen to address the objectives, and finally a description of a use-case for the platform. Whilst the focus of the VRS virtual platform was to facilitate the design of ROPAX vessels, the components within the platform are entirely generic and may be applied to the distributed design of any type of vessel, or other complex made-to-order products
Structural Analysis and Deletion Mutagenesis Define Regions of QUIVER/SLEEPLESS that Are Responsible for Interactions with Shaker-Type Potassium Channels and Nicotinic Acetylcholine Receptors.
Ly6 proteins are endogenous prototoxins found in most animals. They show striking structural and functional parallels to snake α-neurotoxins, including regulation of ion channels and cholinergic signaling. However, the structural contributions of Ly6 proteins to regulation of effector molecules is poorly understood. This question is particularly relevant to the Ly6 protein QUIVER/SLEEPLESS (QVR/SSS), which has previously been shown to suppress excitability and synaptic transmission by upregulating potassium (K) channels and downregulating nicotinic acetylcholine receptors (nAChRs) in wake-promoting neurons to facilitate sleep in Drosophila. Using deletion mutagenesis, co-immunoprecipitations, ion flux assays, surface labeling and confocal microscopy, we demonstrate that only loop 2 is required for many of the previously described properties of SSS in transfected cells, including interactions with K channels and nAChRs. Collectively our data suggest that QVR/SSS, and by extension perhaps other Ly6 proteins, target effector molecules using limited protein motifs. Mapping these motifs may be useful in rational design of drugs that mimic or suppress Ly6-effector interactions to modulate nervous system function
Ship product modelling
This paper is a fundamental review of ship product modeling techniques with a focus on determining the state of the art, to identify any shortcomings and propose future directions. The review addresses ship product data representations, product modeling techniques and integration issues, and life phase issues. The most significant development has been the construction of the ship Standard for the Exchange of Product Data (STEP) application protocols. However, difficulty has been observed with respect to the general uptake of the standards, in particular with the application to legacy systems, often resulting in embellishments to the standards and limiting the ability to further exchange the product data. The EXPRESS modeling language is increasingly being superseded by the extensible mark-up language (XML) as a method to map the STEP data, due to its wider support throughout the information technology industry and its more obvious structure and hierarchy. The associated XML files are, however, larger than those produced using the EXPRESS language and make further demands on the already considerable storage required for the ship product model. Seamless integration between legacy applications appears to be difficult to achieve using the current technologies, which often rely on manual interaction for the translation of files. The paper concludes with a discussion of future directions that aim to either solve or alleviate these issues
- …