83 research outputs found

    XMM-Newton and optical observations of the eclipsing polar CSS081231:071126+440405

    Full text link
    Aims: We aim to study the temporal and spectral behaviour of the eclipsing polar CSS081231:071126+440405 from the infrared to the X-ray regime. Methods: We obtained phase-resolved XMM-Newton X-ray observations on two occasions in 2012 and 2013 in different states of accretion. In 2013 the XMM-Newton X-ray and UV data were complemented by optical photometric and spectroscopic observations. Results: CSS081231 displays two-pole accretion in the high state. The magnetic fields of the two poles are 36 and 69 MG, indicating a non-dipolar field geometry. The X-ray spectrum of the main accreting pole with the lower field comprises a hot thermal component from the cooling accretion plasma, kTplaskT_{plas} of a few tens of keV, and a much less luminous blackbody-like component from the accretion area with kTbb∼kT_{\rm bb} \sim 50-100\,eV. The high-field pole which was located opposite to the mass-donating star accretes at a low rate and has a plasma temperature of about 4\,keV. At both occasions the X-ray eclipse midpoint precedes the optical eclipse midpoint by 3.2 seconds. The center of the X-ray bright phase shows accretion-rate dependent longitudinal motion of ~20 degrees. Conclusions: CSS081231 is a bright polar that escaped detection in the RASS survey because it was in a low accretion state. Even in the high state it lacks the prominent soft component previously thought ubiquitous in polars. Such an excess may still be present in the unobserved extreme ultraviolet. All polars discovered in the XMM-Newton era lack the prominent soft component. The intrinsic spectral energy distribution of polars still awaits characterisation by future X-ray surveys such as eROSITA. The trajectory taken by material to reach the second pole is still uncertain.Comment: 12 pages, 14 figure

    Background subtraction and transient timing with Bayesian Blocks

    Full text link
    Aims: To incorporate background subtraction into the Bayesian Blocks algorithm so that transient events can be timed accurately and precisely even in the presence of a substantial, rapidly variable, background. Methods: We developed several modifications to the algorithm and tested them on a simulated XMM-Newton observation of a bursting and eclipsing object. Results: We found that bursts can be found to good precision for almost all background subtraction methods, but eclipse ingresses and egresses present problems for most methods. We found one method that recovered these events with precision comparable to the interval between individual photons, in which both source and background region photons are combined into a single list and weighted according to the exposure area. We have also found that adjusting the Bayesian Blocks change points nearer to blocks with higher count rate removes a systematic bias towards blocks of low count rate.Comment: 10 pages, 13 figures, 1 tabl

    Evidence for enhanced persistent emission during sub-Eddington thermonuclear bursts

    Full text link
    The standard approach for time-resolved X-ray spectral analysis of thermonuclear bursts involves subtraction of the pre-burst emission as background. This approach implicitly assumes that the persistent flux remains constant throughout the burst. We reanalyzed 332 photospheric radius expansion bursts observed from 40 sources by the Rossi X-ray Timing Explorer, introducing a multiplicative factor faf_a to the persistent emission contribution in our spectral fits. We found that for the majority of spectra the best-fit value of faf_a is significantly greater than 1, suggesting that the persistent emission typically increases during a burst. Elevated faf_a values were not found solely during the radius expansion interval of the burst, but were also measured in the cooling tail. The modified model results in a lower average value of the χ2\chi^2 fit statistic, indicating superior spectral fits, but not yet to the level of formal statistical consistency for all the spectra. We interpret the elevated faf_a values as an increase of the mass accretion rate onto the neutron star during the burst, likely arising from the effects of Poynting-Robertson drag on the disk material. We measured an inverse correlation of faf_a with the persistent flux, consistent with theoretical models of the disc response. We suggest that this modified approach may provide more accurate burst spectral parameters, as well as offering a probe of the accretion disk structure.Comment: 15 pages, 9 figure

    Evidence for accretion rate change during type I X-ray bursts

    Full text link
    The standard approach for time-resolved X-ray spectral analysis of thermonuclear bursts involves subtraction of the pre-burst emission as background. This approach implicitly assumes that the persistent flux remains constant throughout the burst. We reanalyzed 332 photospheric radius expansion bursts observed from 40 sources by the Rossi X-ray Timing Explorer, introducing a multiplicative factor faf_a to the persistent emission contribution in our spectral fits. We found that for the majority of spectra the best-fit value of faf_a is significantly greater than 1, suggesting that the persistent emission typically increases during a burst. Elevated faf_a values were not found solely during the radius expansion interval of the burst, but were also measured in the cooling tail. The modified model results in a lower average value of the χ2\chi^2 fit statistic, indicating superior spectral fits, but not yet to the level of formal statistical consistency for all the spectra. We interpret the elevated faf_a values as an increase of the mass accretion rate onto the neutron star during the burst, likely arising from the effects of Poynting-Robertson drag on the disk material. We measured an inverse correlation of faf_a with the persistent flux, consistent with theoretical models of the disc response. We suggest that this modified approach may provide more accurate burst spectral parameters, as well as offering a probe of the accretion disk structure.Comment: 15 pages, 12 figures, 4 table

    X-ray and ultraviolet observations of the eclipsing cataclysmic variables OV Bootis and SDSS J103533.02+055158.3 with degenerate donors

    Full text link
    The majority of cataclysmic variables are predicted to be post-period minimum systems with degenerate donor stars, the period bouncers. Owing to their intrinsic faintness, however, only a handful of these systems have so far been securely identified. We want to study the X-ray properties of two eclipsing period bouncers, OV Bootis and SDSS J103533.02+055158.3, that were selected for this study due to their proximity to Earth. We have obtained XMM-Newton phase-resolved X-ray and ultraviolet observations of the two objects for spectral and timing analysis. Owing to a recent dwarf nova outburst OV Boo was much brighter than SDSS J103533.02+055158.3 at X-ray and ultraviolet wavelengths and the eclipse could be studied in some detail. An updated eclipse ephemeris was derived. The X-rays were shown to originate close to the white dwarf, the boundary layer, with significant absorption affecting its spectrum. There was no absorption in SDSS J103533.02+055158.3, despite being observed at the same inclination indicating different shapes of the disk and the disk rim. The white-dwarf temperature was re-determined for both objects: the white dwarf in OV Boo was still hot (23,000 K) five months after a dwarf nova outburst, and the white dwarf in SDSS J103533.02+055158.3 hotter than assumed previously (Teff = 11,500 K). All three cataclysmic variables with degenerate donors studied so far in X-rays, including SDSS J121209.31+013627.7, were clearly discovered in X-rays and revealed mass accretion rates dot(M) >= 8 x 10^(-15) Msun/ yr. If their X-ray behavior is representative of the subpopulation of period bouncers, the all-sky X-ray surveys with eROSITA together with comprehensive follow-up will uncover new objects in sufficient number to address the remaining questions concerning late-stage cataclysmic variable evolution.Comment: 12 pages, 13 figures, accepted for publication in A&

    The Clustering Of Galaxies Around Radio-Loud AGNs

    Full text link
    We examine the hypothesis that mergers and close encounters between galaxies can fuel AGNs by increasing the rate at which gas accretes towards the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the 6dFGS survey. We find that radio AGNs with more than 200 times the median radio power have, on average, more close (r<160 kpc) companions than their radio-quiet counterparts, suggestive that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is not a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years.Comment: 12 pages, 6 figure

    V902 Monocerotis: a likely disc-accreting intermediate polar

    Full text link
    Aims: We aim to confirm whether the eclipsing cataclysmic variable V902 Mon is an Intermediate Polar, to characterise its X-ray spectrum and flux, and to refine its orbital ephemeris and spin period. Methods: We performed spectrographic observations of V902 Mon in 2016 with the 2.2m Calar Alto telescope, and X-ray photometry and spectroscopy with XMM-Newton in October 2017. This data was supplemented by several years of AAVSO visual photometry. Results: We have confirmed V902 Mon as an IP based on detecting the spin period, with a value of 2,208s, at multiple epochs. Spectroscopy of the donor star and Gaia parallax yield a distance of 3.5+1.3-0.9, kpc, suggesting an X-ray luminosity one or two orders of magnitude lower than the 10^33 erg/s typical of previously known IPs. The X-ray to optical flux ratio is also very low. The inclination of the system is more than 79deg, with a most likely value of around 82deg. We have refined the eclipse ephemeris, stable over 14,000 cycles. The Halpha line is present throughout the orbital cycle and is clearly present during eclipse, suggesting an origin distant from the white dwarf, and shows radial velocity variations at the orbital period. The amplitude and overall recessional velocity seem inconsistent with an origin in the disc. The \emph{XMM-Newton} observation reveals a partially absorbed plasma model typical of magnetic CVs, with a fluorescent iron line at 6.4keV showing a large equivalent width of 1.4keV. Conclusions: V902 Mon is an IP, and probably a member of the hypothesized X-ray underluminous class of IPs. It is likely to be a disc accretor, though the radial velocity behaviour of the Halpha line remains puzzling. The large equivalent width of the fluorescent iron line, the small FX/Fopt ratio, and the only marginal detection of X-ray eclipses suggests that the X-ray emission arises from scattering.Comment: 10 pages, 12 figure

    Probing X-ray burst -- accretion disk interaction in low mass X-ray binaries through kilohertz quasiperiodic oscillations

    Full text link
    The intense radiation flux of Type I X-ray bursts is expected to interact with the accretion flow around neutron stars. High frequency quasiperiodic oscillations (kHz QPOs), observed at frequencies matching orbital frequencies at tens of gravitational radii, offer a unique probe of the innermost disk regions. In this paper, we follow the lower kHz QPOs, in response to Type I X-ray bursts, in two prototypical QPO sources, namely 4U 1636-536 and 4U 1608-522, as observed by the Proportional Counter Array of the Rossi X-ray Timing Explorer. We have selected a sample of 15 bursts for which the kHz QPO frequency can be tracked on timescales commensurable with the burst durations (tens of seconds). We find evidence that the QPOs are affected for over ~200 s during one exceptionally long burst and ~100 s during two others (although at a less significant level), while the burst emission has already decayed to a level that would enable the pre-burst QPO to be detected. On the other hand, for most of our burst-kHz QPO sample, we show that the QPO is detected as soon as the statistics allow and in the best cases, we are able to set an upper limit of ~20 s on the recovery time of the QPO. This diversity of behavior cannot be related to differences in burst peak luminosity. We discuss these results in the framework of recent findings that accretion onto the neutron star may be enhanced during Type I X-ray bursts. The subsequent disk depletion could explain the disappearance of the QPO for ~100 s, as possibly observed in two events. However, alternative scenarios would have to be invoked for explaining the short recovery timescales inferred from most bursts. Clearly the combination of fast timing and spectral information of Type I X-ray bursts holds great potential in the study of the dynamics of the inner accretion flow around neutron stars.Comment: 8 pages, 9 figures, appears in Astronomy & Astrophysics, Volume 567, id.A80, published 07/201
    • …
    corecore