64 research outputs found

    GPS scintillations associated with cusp dynamics and polar cap patches

    Get PDF
    This paper investigates the relative scintillation level associated with cusp dynamics (including precipitation, flow shears, etc.) with and without the formation of polar cap patches around the cusp inflow region by the EISCAT Svalbard radar (ESR) and two GPS scintillation receivers. A series of polar cap patches were observed by the ESR between 8:40 and 10:20 UT on December 3, 2011. The polar cap patches combined with the auroral dynamics were associated with a significantly higher GPS phase scintillation level (up to 0.6 rad) than those observed for the other two alternatives, i.e., cusp dynamics without polar cap patches, and polar cap patches without cusp aurora. The cusp auroral dynamics without plasma patches were indeed related to GPS phase scintillations at a moderate level (up to 0.3 rad). The polar cap patches away from the active cusp were associated with sporadic and moderate GPS phase scintillations (up to 0.2 rad). The main conclusion is that the worst global navigation satellite system space weather events on the dayside occur when polar cap patches enter the polar cap and are subject to particle precipitation and flow shears, which is analogous to the nightside when polar cap patches exit the polar cap and enter the auroral oval

    On the Wake Structure in Streaming Complex Plasmas

    Get PDF
    The theoretical description of complex (dusty) plasmas requires multiscale concepts that adequately incorporate the correlated interplay of streaming electrons and ions, neutrals, and dust grains. Knowing the effective dust-dust interaction, the multiscale problem can be effectively reduced to a one-component plasma model of the dust subsystem. The goal of the present publication is a systematic evaluation of the electrostatic potential distribution around a dust grain in the presence of a streaming plasma environment by means of two complementary approaches: (i) a high precision computation of the dynamically screened Coulomb potential from the dynamic dielectric function, and (ii) full 3D particle-in-cell simulations, which self-consistently include dynamical grain charging and non-linear effects. The applicability of these two approaches is addressed

    The implications of ionospheric disturbances for precise GNSS positioning in Greenland

    Get PDF
    Ionospheric irregularities impair Global Navigation Satellite System (GNSS) signals and, in turn, affect the performance of GNSS positioning. Such effects are especially evident at low and high latitudes, which are currently gaining the attention of research and industry sectors. This study evaluates the impact of ionospheric irregularities on GNSS positioning in Greenland. We assess the performance of positioning methods that meet the demands of a wide range of users. In particular, we address the needs of the users of mass-market single-frequency receivers and those who require a solution of high precision provided by geodetic dual-frequency receivers. We take advantage of the datasets collected during three ionospheric storms: the St. Patrick’s Day storm of March 17, 2015, the storm on June 22, 2015, and another on August 25–26, 2018. We discover a significant impact of the ionospheric disturbances on the ambiguity resolution performance and the accuracy of the float solution in Real Time Kinematics (RTK) positioning. Next, assessing the single-frequency ionosphere-free Precise Point Positioning (PPP), we demonstrate that the model is generally unaffected by ionospheric disturbances. Hence, the model is predestined for the application by the users of single-frequency receivers in the areas of frequent ionospheric disturbances. Finally, based on the observation analyses, we reveal that phase signals on the L2 frequency band are more prone to cycle slips induced by ionospheric irregularities than those transmitted on the L1. Such signal properties explain a noticeable decline in the dual-frequency RTK performance during the ionospherically disturbed period and merely no effect for the single-frequency ionosphere-free PPP model.Peer ReviewedPostprint (published version

    Method for forecasting ionospheric electron content fluctuations based on the optical flow algorithm

    Get PDF
    We present the optical flow algorithm for forecasting the rate of total electron content index (OFROTI). It consists of a method for predicting maps of rapid fluctuations of ionospheric electron content in terms of global navigation satellite system (GNSS) dual-frequency phase measurements of the rate of change of total electron content index (ROTI). The forecast is made in space and time, at horizons up to more than 6 h. These forecast maps will consist of the ROTI spatial distribution in the northern hemisphere above 45° latitude. The prediction method models the ROTI spatial distribution as a pseudoconservative flux, i.e., exploiting the inertia of the flux of ROTI to determine the future position. This idea is implemented as a modification of the optical flow image processing technique. The algorithm has been modified to deal with the nonconservation of the ROTI quantity in time. We show that the method can predict both, the local value of ROTI and also the regions with ROTI above a given level, better than the prediction using the current map as forecast, i.e., predicting by a current map from horizons of 15 min up to 6 h. The method was tested on 11 representative active and calm days during 2015 and 2018 from the multi-GNSS (GPS, GLONASS, Galileo, and Beidou) multifrequency measurements of more than 250 multi-GNSS receivers above 45°N latitude, including the high rate (1 Hz) measurements of Greenland geodetic network (GNET) network among the International GNSS Service network.This work is funded by ESA ITT “Forecasting Space Weather Impacts on Navigation Systems in the Arctic (Green-land Area)” Expro+, Activity No. 1000026374. The GNET GNSS observations from Greenland was kindly provided by The Danish Agency for Data Supply and Efficiency, in the Danish Ministry of Energy, Utilities and Climate, Copenhagen, DenmarkPeer ReviewedPostprint (author's final draft

    Statistical Models of the Variability of Plasma in the Topside Ionosphere:2. Performance assessment

    Get PDF
    Statistical models of the variability of plasma in the topside ionosphere based on the Swarm data have been developed in the “Swarm Variability of Ionospheric Plasma” (Swarm-VIP) project within the European Space Agency’s Swarm+4D-Ionosphere framework. The models can predict the electron density, its gradients for three horizontal spatial scales – 20, 50 and 100 km – along the North-South direction and the level of the density fluctuations. Despite being developed by leveraging on Swarm data, the models provide predictions that are independent of these data, having a global coverage, fed by various parameters and proxies of the helio-geophysical conditions. Those features make the Swarm-VIP models useful for various purposes, which include the possible support for already available ionospheric models and proxy of the effect of ionospheric irregularities of the medium scales that affect the signals emitted by Global Navigation Satellite Systems (GNSS). The formulation, optimisation and validation of the Swarm-VIP models are reported in Paper 1 (Wood et al. 2024. J Space Weather Space Clim. in press). This paper describes the performance assessment of the models, by addressing their capability to reproduce the known climatological variability of the modelled quantities, and the ionospheric weather as depicted by ground-based GNSS, as a proxy for the ionospheric effect on GNSS signals. Additionally, we demonstrate that, under certain conditions, the model can better reproduce the ionospheric variability than a physics-based model, namely the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM)

    Plasma-neutral interactions in the lower thermosphere-ionosphere : The need for in situ measurements to address focused questions

    Get PDF
    The lower thermosphere-ionosphere (LTI) is a key transition region between Earth's atmosphere and space. Interactions between ions and neutrals maximize within the LTI and in particular at altitudes from 100 to 200 km, which is the least visited region of the near-Earth environment. The lack of in situ co-temporal and co-spatial measurements of all relevant parameters and their elusiveness to most remote-sensing methods means that the complex interactions between its neutral and charged constituents remain poorly characterized to this date. This lack of measurements, together with the ambiguity in the quantification of key processes in the 100-200 km altitude range affect current modeling efforts to expand atmospheric models upward to include the LTI and limit current space weather prediction capabilities. We present focused questions in the LTI that are related to the complex interactions between its neutral and charged constituents. These questions concern core physical processes that govern the energetics, dynamics, and chemistry of the LTI and need to be addressed as fundamental and long-standing questions in this critically unexplored boundary region. We also outline the range of in situ measurements that are needed to unambiguously quantify key LTI processes within this region, and present elements of an in situ concept based on past proposed mission concepts.Peer reviewe

    Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models

    Get PDF
    The lower-thermosphere-ionosphere (LTI) system consists of the upper atmosphere and the lower part of the ionosphere and as such comprises a complex system coupled to both the atmosphere below and space above. The atmospheric part of the LTI is dominated by laws of continuum fluid dynamics and chemistry, while the ionosphere is a plasma system controlled by electromagnetic forces driven by the magnetosphere, the solar wind, as well as the wind dynamo. The LTI is hence a domain controlled by many different physical processes. However, systematic in situ measurements within this region are severely lacking, although the LTI is located only 80 to 200 km above the surface of our planet. This paper reviews the current state of the art in measuring the LTI, either in situ or by several different remote-sensing methods. We begin by outlining the open questions within the LTI requiring high-quality in situ measurements, before reviewing directly observable parameters and their most important derivatives. The motivation for this review has arisen from the recent retention of the Daedalus mission as one among three competing mission candidates within the European Space Agency (ESA) Earth Explorer 10 Programme. However, this paper intends to cover the LTI parameters such that it can be used as a background scientific reference for any mission targeting in situ observations of the LTI.Peer reviewe

    Numerical Study of Plasma Depletion Region in a Satellite Wake

    Get PDF
    We demonstrated the existence of a distorted plasma depletion region in a satellite wake through 3-D electrostatic particle-in-cell (PIC) plasma simulations. It is commonly known that a wake is formed in the downstream region of a satellite in a magnetized plasma flow. Our simulation shows that the plasma depletion region in the wake is distorted in the plane perpendicular to the static magnetic field. This distortion is asymmetric with respect to the plasma flow direction in the satellite rest frame of reference. We found that the asymmetric structure of the plasma depletion region is caused by nonuniform local drift motion of electrons around the depletion region. By test particle simulations in which electron trajectories are traced in fixed fields obtained in the PIC simulation, we confirmed that cold electrons that have a Larmor radius less than the size of the satellite can cause the asymmetric structure of the plasma depletion in the wake
    corecore