233 research outputs found

    Energy-corrected FEM and explicit time-stepping for parabolic problems

    Full text link
    The presence of corners in the computational domain, in general, reduces the regularity of solutions of parabolic problems and diminishes the convergence properties of the finite element approximation introducing a so-called "pollution effect". Standard remedies based on mesh refinement around the singular corner result in very restrictive stability requirements on the time-step size when explicit time integration is applied. In this article, we introduce and analyse the energy-corrected finite element method for parabolic problems, which works on quasi-uniform meshes, and, based on it, create fast explicit time discretisation. We illustrate these results with extensive numerical investigations not only confirming the theoretical results but also showing the flexibility of the method, which can be applied in the presence of multiple singular corners and a three-dimensional setting. We also propose a fast explicit time-stepping scheme based on a piecewise cubic energy-corrected discretisation in space completed with mass-lumping techniques and numerically verify its efficiency

    Adaptive control in rollforward recovery for extreme scale multigrid

    Full text link
    With the increasing number of compute components, failures in future exa-scale computer systems are expected to become more frequent. This motivates the study of novel resilience techniques. Here, we extend a recently proposed algorithm-based recovery method for multigrid iterations by introducing an adaptive control. After a fault, the healthy part of the system continues the iterative solution process, while the solution in the faulty domain is re-constructed by an asynchronous on-line recovery. The computations in both the faulty and healthy subdomains must be coordinated in a sensitive way, in particular, both under and over-solving must be avoided. Both of these waste computational resources and will therefore increase the overall time-to-solution. To control the local recovery and guarantee an optimal re-coupling, we introduce a stopping criterion based on a mathematical error estimator. It involves hierarchical weighted sums of residuals within the context of uniformly refined meshes and is well-suited in the context of parallel high-performance computing. The re-coupling process is steered by local contributions of the error estimator. We propose and compare two criteria which differ in their weights. Failure scenarios when solving up to 6.9â‹…10116.9\cdot10^{11} unknowns on more than 245\,766 parallel processes will be reported on a state-of-the-art peta-scale supercomputer demonstrating the robustness of the method

    Simultaneous Reduced Basis Approximation of Parameterized Elliptic Eigenvalue Problems

    Get PDF
    The focus is on a model reduction framework for parameterized elliptic eigenvalue problems by a reduced basis method. In contrast to the standard single output case, one is interested in approximating several outputs simultaneously, namely a certain number of the smallest eigenvalues. For a fast and reliable evaluation of these input-output relations, we analyze a posteriori error estimators for eigenvalues. Moreover, we present different greedy strategies and study systematically their performance. Special attention needs to be paid to multiple eigenvalues whose appearance is parameter-dependent. Our methods are of particular interest for applications in vibro-acoustics
    • …
    corecore