6 research outputs found

    Wavelet-based image and video super-resolution reconstruction.

    Get PDF
    Super-resolution reconstruction process offers the solution to overcome the high-cost and inherent resolution limitations of current imaging systems. The wavelet transform is a powerful tool for super-resolution reconstruction. This research provides a detailed study of the wavelet-based super-resolution reconstruction process, and wavelet-based resolution enhancement process (with which it is closely associated). It was addressed to handle an explicit need for a robust wavelet-based method that guarantees efficient utilisation of the SR reconstruction problem in the wavelet-domain, which will lead to a consistent solution of this problem and improved performance. This research proposes a novel performance assessment approach to improve the performance of the existing wavelet-based image resolution enhancement techniques. The novel approach is based on identifying the factors that effectively influence on the performance of these techniques, and designing a novel optimal factor analysis (OFA) algorithm. A new wavelet-based image resolution enhancement method, based on discrete wavelet transform and new-edge directed interpolation (DWT-NEDI), and an adaptive thresholding process, has been developed. The DWT-NEDI algorithm aims to correct the geometric errors and remove the noise for degraded satellite images. A robust wavelet-based video super-resolution technique, based on global motion is developed by combining the DWT-NEDI method, with super-resolution reconstruction methods, in order to increase the spatial-resolution and remove the noise and aliasing artefacts. A new video super-resolution framework is designed using an adaptive local motion decomposition and wavelet transform reconstruction (ALMD-WTR). This is to address the challenge of the super-resolution problem for the real-world video sequences containing complex local motions. The results show that OFA approach improves the performance of the selected wavelet-based methods. The DWT-NEDI algorithm outperforms the state-of-the art wavelet-based algorithms. The global motion-based algorithm has the best performance over the super-resolution techniques, namely Keren and structure-adaptive normalised convolution methods. ALMD-WTR framework surpass the state-of-the-art wavelet-based algorithm, namely local motion-based video super-resolution.PhD in Manufacturin

    An optimal factor analysis approach to improve the wavelet-based image resolution enhancement techniques

    Get PDF
    The existing wavelet-based image resolution enhancement techniques have many assumptions, such as limitation of the way to generate low-resolution images and the selection of wavelet functions, which limits their applications in different fields. This paper initially identifies the factors that effectively affect the performance of these techniques and quantitatively evaluates the impact of the existing assumptions. An approach called Optimal Factor Analysis employing the genetic algorithm is then introduced to increase the applicability and fidelity of the existing methods. Moreover, a new Figure of Merit is proposed to assist the selection of parameters and better measure the overall performance. The experimental results show that the proposed approach improves the performance of the selected image resolution enhancement methods and has potential to be extended to other methods

    Global motion based video super-resolution reconstruction using discrete wavelet transform

    Get PDF
    Different from the existing super-resolution (SR) reconstruction approaches working under either the frequency-domain or the spatial- domain, this paper proposes an improved video SR approach based on both frequency and spatial-domains to improve the spatial resolution and recover the noiseless high-frequency components of the observed noisy low-resolution video sequences with global motion. An iterative planar motion estimation algorithm followed by a structure-adaptive normalised convolution reconstruction method are applied to produce the estimated low-frequency sub-band. The discrete wavelet transform process is employed to decompose the input low-resolution reference frame into four sub-bands, and then the new edge-directed interpolation method is used to interpolate each of the high-frequency sub-bands. The novelty of this algorithm is the introduction and integration of a nonlinear soft thresholding process to filter the estimated high-frequency sub-bands in order to better preserve the edges and remove potential noise. Another novelty of this algorithm is to provide flexibility with various motion levels, noise levels, wavelet functions, and the number of used low-resolution frames. The performance of the proposed method has been tested on three well-known videos. Both visual and quantitative results demonstrate the high performance and improved flexibility of the proposed technique over the conventional interpolation and the state-of-the-art video SR techniques in the wavelet- domain

    Satellite image resolution enhancement using discrete wavelet transform and new edge-directed interpolation

    Get PDF
    An image resolution enhancement approach based on discrete wavelet transform (DWT) and new edge-directed interpolation (NEDI) for degraded satellite images by geometric distortion to correct the errors in image geometry and recover the edge details of directional high-frequency subbands is proposed. The observed image is decomposed into four frequency subbands through DWT, and then the three high-frequency subbands and the observed image are processed with NEDI. To better preserve the edges and remove potential noise in the estimated high-frequency subbands, an adaptive threshold is applied to process the estimated wavelet coefficients. Finally, the enhanced image is reconstructed by applying inverse DWT. Four criteria are introduced, aiming to better assess the overall performance of the proposed approach for different types of satellite images. A public satellite images data set is selected for the validation purpose. The visual and quantitative results show the superiority of the proposed approach over the conventional and state-of-the-art image resolution enhancement