672 research outputs found
128Xe and 130Xe: Testing He-shell burning in AGB stars
The s-process branching at 128I has been investigated on the basis of new,
precise experimental (n,g) cross sections for the s-only isotopes 128Xe and
130Xe. This branching is unique, since it is essentially determined by the
temperature- and density-sensitive stellar decay rates of 128I and only
marginally affected by the specific stellar neutron flux. For this reason it
represents an important test for He-shell burning in AGB stars. The description
of the branching by means of the complex stellar scenario reveals a significant
sensitivity to the time scales for convection during He shell flashes, thus
providing constraints for this phenomenon. The s-process ratio 128Xe/130Xe
deduced from stellar models allows for a (9+-3)% p-process contribution to
solar 128Xe, in agreement with the Xe-S component found in meteoritic presolar
SiC grains.Comment: 24 pages, 9 figures, accepted for publication in Astophysical Journa
A new approach for precise measurements of keV neutron capture cross sections: the examples of ⁹³Nb, ¹⁰³Rh, and ¹⁸¹Ta
The 93Zr(n, γ) reaction up to 8 keV neutron energy
The (n,γ) reaction of the radioactive isotope 93Zr has been measured at the n-TOF high-resolution time-of-flight facility at CERN. Resonance parameters have been extracted in the neutron energy range up to 8 keV, yielding capture widths smaller (14%) than reported in an earlier experiment. These results are important for detailed nucleosynthesis calculations and for refined studies of waste transmutation concepts.EC FIKW-CT-2000-0010
- …