8,511 research outputs found

    Behavioural simulation of biological neuron systems using VHDL and VHDL-AMS

    No full text
    The investigation of neuron structures is an incredibly difficult and complex task that yields relatively low rewards in terms of information from biological forms (either animals or tissue). The structures and connectivity of even the simplest invertebrates are almost impossible to establish with standard laboratory techniques, and even when this is possible it is generally time consuming, complex and expensive. Recent work has shown how a simplified behavioural approach to modelling neurons can allow “virtual” experiments to be carried out that map the behaviour of a simulated structure onto a hypothetical biological one, with correlation of behaviour rather than underlying connectivity. The problems with such approaches are numerous. The first is the difficulty of simulating realistic aggregates efficiently, the second is making sense of the results and finally, it would be helpful to have an implementation that could be synthesised to hardware for acceleration. In this paper we present a VHDL implementation of Neuron models that allow large aggregates to be simulated. The models are demonstrated using a system level VHDL and VHDL-AMS model of the C. Elegans locomotory system

    An Intelligent Fuse-box for use with Renewable Energy Sources integrated within a Domestic Environment

    No full text
    This paper outlines a proposal for an intelligent fuse-box that can replace existing fuse-boxes in a domestic context such that a number of renewable energy sources can easily be integrated into the domestic power supply network, without the necessity for complex islanding and network protection. The approach allows intelligent control of both the generation of power and its supply to single or groups of electrical appliances. Energy storage can be implemented in such a scheme to even out the power supplied and simplify the control scheme required, and environmental monitoring and load analysis can help in automatically controlling the supply and demand profiles for optimum electrical and economic efficiency. Simulations of typical scenarios are carried out to illustrate the concept in operation

    Discussion paper and working paper series : Motivations, expectations and experiences of Australian rural and regional planners

    Get PDF
    Despite playing an extremely important role in shaping communities, the role and contribution of planners is not widely understood or acknowledged. At the same time, there is a shortage of planners in Australia, especially in non-urban areas. Thus, though an online survey of 185 rural and regional planners, this research explores their motivations, expectations and experiences. Most enjoyed and felt confident in their role, explaining that they valued the relaxed family orientated rural lifestyle and the varied nature of the planning work. Although they sometimes felt isolated, the non-urban location provided quicker progression to senior roles, the ability to engage directly with the community and to see the consequences of their decisions. Only half felt their education had prepared them well for their role, citing gaps in terms of computerised modelling, team leadership and conflict resolution skills. Their feedback centred on providing a more practical course, focussing more on regional planning, and encouraging urban and rural experience placements. As the first study to quantifiably explore rural and regional Australian planners perceptions of their role and challenges, the findings illustrate current experiences, key planning challenges, perceived educational gaps and future priorities

    A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    Get PDF
    This report describes a design and analysis study performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061. The objective of the study was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in long-term space missions. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) system consisting of two 25-kWe free-piston Stirling engine modules. Two different versions of the RSSPC engine modules have been defined under NASA Contract NAS3-25463. These modules currently use hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Results of this study show that active magnetic bearings of the attractive electromagnetic type are technically feasible for RSSPC application provided that wire insulation with 60,000-hr life capability at 300 C can be developed for the bearing coils. From a design integration standpoint, both versions of the RSSPC were found to be conceptually amenable to magnetic support of the power piston assembly. However, only one version of the RSSPC was found to be amendable to magnetic support of the displacer assembly. Unacceptable changes to the basic engine design would be required to incorporate magnetic displacer bearings into the second version. Complete magnetic suspension of the RSSPC can potentially increase overall efficiency of the Stirling cycle power converter by 0.53 to 1.4 percent (0.15 to 0.4 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. However, these advantages are accompanied by a 5 to 8 percent increase in specific mass of the RSSPC, depending on the RSSPC version employed. Additionally, magnetic bearings are much more complex, both mechanically and particularly electronically, than hydrostatic bearings. Accordingly, long-term stability and reliability represent areas of uncertainty for magnetic bearings. Considerable development effort will be required to establish the long-term suitability of these bearings for Stirling space power applications