832 research outputs found

    The properties of kaonic nuclei in relativistic mean-field theory

    Full text link
    The static properties of some possible light and moderate kaonic nuclei, from C to Ti, are studied in the relativistic mean-field theory. The 1s and 1p state binding energies of KK^- are in the range of 739673\sim 96 MeV and 226322\sim 63 MeV, respectively. The binding energies of 1p states increase monotonically with the nucleon number A. The upper limit of the widths are about 42±1442\pm 14 MeV for the 1s states, and about 71±1071\pm 10 MeV for the 1p states. The lower limit of the widths are about 12±412\pm 4 MeV for the 1s states, and 21±321\pm 3 MeV for the 1p states. If V030V_{0}\leq 30 MeV, the discrete KK^- bound states should be identified in experiment. The shrinkage effect is found in the possible kaonic nuclei. The interior nuclear density increases obviously, the densest center density is about 2.1ρ02.1\rho_{0}.Comment: 9 pages, 2 tables and 1 figure, widths are considered, changes a lo

    Future directions in kaonic atom physics

    Full text link
    Recent progress and open problems in kaonic atom physics are presented. A connection between phenomenological deep potentials and the underlying KNK^-N interaction is established as well as the need for a theory for multinucleon absorption of kaons. KK^- absorption at rest to specific Λ\Lambda hypernuclei states is briefly discussed.Comment: 6 pages, 3 figures, proceedings of the EXA2011 conference, to appear in Hyperfine Interaction

    Kaon Absorption from Kaonic Atoms and Formation Spectra of Kaonic Nuclei

    Get PDF
    We considered the kaon absorption from atomic states into nucleus. We found that the nuclear density probed by the atomic kaon significantly depends on the kaon orbit. Then, we reexamined the meanings of the observed strengths of one-body and two-body kaon absorption, and investigated the effects to the formation spectra of kaon bound states by in-flight (K,pK^-,p) reactions. As a natural consequence, if the atomic kaon probes the smaller nuclear density, the ratio of the two-body absorption at nuclear center is larger than the observed value, and the depth of the imaginary potential is deeper even at smaller kaon energies as in kaonic nuclear states because of the large phase space for the two-body processes.Comment: 8 pages, 5 figure

    The A(Kstop,π±Σ)AA(K^-_{stop},\pi^\pm\Sigma^\mp)A' reaction on p-shell nuclei

    Get PDF
    This letter is concerned with the study of the KstopAπ±ΣAK^-_{stop}A\rightarrow \pi^\pm\Sigma^\mp A' reaction in p-shell nuclei, i.e., 6,7Li^{6,7}Li, 9Be^9Be, 13C^{13}C and 16O^{16}O. The π±Σ/Kstop\pi^\pm\Sigma^\mp / K^-_{stop} emission rates are reported as a function of AA. These rates are discussed in comparison with previous findings. The ratio πΣ+/π+Σ\pi^-\Sigma^+/\pi^+\Sigma^- in p-shell nuclei is found to depart largely from that on hydrogen, which provides support for large in-medium effects possibly generated by the sub-threshold Λ(1405)\Lambda(1405). The continuum momentum spectra of prompt pions and free sigmas are also discussed as well as the π±Σ\pi^\pm\Sigma^\mp missing mass behavior and the link with the reaction mechanism. The apparatus used for the investigation is the FINUDA spectrometer operating at the DAΦ\PhiNE ϕ\phi-factory (LNF-INFN, Italy).Comment: 14 pages, 5 figures, accepted for publication in Phys. Lett.

    Kˉ\bar K nuclear bound states in a dynamical model

    Full text link
    A comprehensive data base of K- atom level shifts and widths is re-analyzed in order to study the density dependence of the Kbar-nuclear optical potential. Significant departure from a t*rho form is found only for nuclear densities about and less than 20% of nuclear-matter density, and extrapolation to nuclear-matter density yields an attractive potential, about 170 MeV deep. Partial restoration of chiral symmetry compatible with pionic atoms and low-energy pion-nuclear data plays no role at the relevant low-density regime, but this effect is not ruled out at high densities. Kbar-nuclear bound states are generated across the periodic table self consistently, using a relativistic mean-field model Lagrangian which couples the Kbar to the scalar and vector meson fields mediating the nuclear interactions. The reduced phase space available for Kbar absorption from these bound states is taken into account by adding an energy-dependent imaginary term which underlies the corresponding Kbar-nuclear level widths, with a strength required by fits to the atomic data. Substantial polarization of the core nucleus is found for light nuclei, and the binding energies and widths calculated in this dynamical model differ appreciably from those calculated for a static nucleus. A wide range of binding energies is spanned by varying the Kbar couplings to the meson fields. Our calculations provide a lower limit of Gamma(Kbar) = 50 +/- 10 MeV on the width of nuclear bound states for Kbar binding energy in the range B(Kbar) = 100 - 200 MeV. Comments are made on the interpretation of the FINUDA experiment at DAFNE, Frascati, which claimed evidence for deeply bound (K- pp) states in light nuclei.Comment: Added 2 figures and discussion. Version accepted for publication in NP

    Venus transit 2004: Illustrating the capability of exoplanet transmission spectroscopy

    Full text link
    The transit of Venus in 2004 offered the rare possibility to remotely sense a well-known planetary atmosphere using ground-based observations for absorption spectroscopy. Transmission spectra of Venus' atmosphere were obtained in the near infrared using the Vacuum Tower Telescope (VTT) in Tenerife. Since the instrument was designed to measure the very bright photosphere of the Sun, extracting Venus' atmosphere was challenging. CO_2 absorption lines could be identified in the upper Venus atmosphere. Moreover, the relative abundance of the three most abundant CO_2 isotopologues could be determined. The observations resolved Venus' limb, showing Doppler-shifted absorption lines that are probably caused by high-altitude winds. This paper illustrates the ability of ground-based measurements to examine atmospheric constituents of a terrestrial planet atmosphere which might be applied in future to terrestrial extrasolar planets.Comment: 7 pages, 5 figures, 1 tabl

    Branching ratio change in K- absorption at rest and the nature of the Lambda(1405)

    Full text link
    We investigate in-medium corrections to the branching ratio in K- absorption at rest and their effect on the (positively and negatively) charged pion spectrum. The in-medium corrections are due to Pauli blocking, which arises if the Lambda(1405) is assumed to be a Kˉ\bar{K}-nucleon bound state and leads to a density and momentum dependent mass shift of the Lambda(1405). Requiring that the optical potential as well as the branching ratio are derived from the same elementary T-matrix, we find that the in-medium corrected, density dependent T-matrix gives a better description of the K- absorption reaction than the free, density-independent one. This result suggests that the dominant component of the Lambda(1405) wave function is the KˉN\bar{K}N bound state.Comment: 8 Pages, Revtex with epsf, and embedded 8 ps figure

    The OPERA experiment Target Tracker

    Get PDF
    The main task of the Target Tracker detector of the long baseline neutrino oscillation OPERA experiment is to locate in which of the target elementary constituents, the lead/emulsion bricks, the neutrino interactions have occurred and also to give calorimetric information about each event. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multi-anode photomultiplier tubes. All the elements used in the construction of this detector and its main characteristics are described.Comment: 25 pages, submitted to Nuclear Instrument and Method

    Sunlight refraction in the mesosphere of Venus during the transit on June 8th, 2004

    Full text link
    Many observers in the past gave detailed descriptions of the telescopic aspect of Venus during its extremely rare transits across the Solar disk. In particular, at the ingress and egress, the portion of the planet's disk outside the Solar photosphere has been repeatedly perceived as outlined by a thin, bright arc ("aureole"). Those historical visual observations allowed inferring the existence of Venus' atmosphere, the bright arc being correctly ascribed to the refraction of light by the outer layers of a dense atmosphere. On June 8th, 2004, fast photometry based on electronic imaging devices allowed the first quantitative analysis of the phenomenon. Several observers used a variety of acquisition systems to image the event -- ranging from amateur-sized to professional telescopes and cameras -- thus collecting for the first time a large amount of quantitative information on this atmospheric phenomenon. In this paper, after reviewing some elements brought by the historical records, we give a detailed report of the ground based observations of the 2004 transit. Besides confirming the historical descriptions, we perform the first photometric analysis of the aureole using various acquisition systems. The spatially resolved data provide measurements of the aureole flux as a function of the planetocentric latitude along the limb. A new differential refraction model of solar disk through the upper atmosphere allows us to relate the variable photometry to the latitudinal dependency of scale-height with temperature in the South polar region, as well as the latitudinal variation of the cloud-top layer altitude. We compare our measurements to recent analysis of the Venus Express VIRTIS-M, VMC and SPICAV/SOIR thermal field and aerosol distribution. Our results can be used a starting point for new, more optimized experiments during the 2012 transit event.Comment: Icarus, in pres

    A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c

    Get PDF
    Three Earth-sized exoplanets were recently discovered close to the habitable zone of the nearby ultracool dwarf star TRAPPIST-1. The nature of these planets has yet to be determined, since their masses remain unmeasured and no observational constraint is available for the planetary population surrounding ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting example. Theoretical predictions span the entire atmospheric range from depleted to extended hydrogen-dominated atmospheres. Here, we report a space-based measurement of the combined transmission spectrum of the two inner planets made possible by a favorable alignment resulting in their simultaneous transits on 04 May 2016. The lack of features in the combined spectrum rules out cloud-free hydrogen-dominated atmospheres for each planet at 10-σ\sigma levels; TRAPPIST-1 b and c are hence unlikely to harbor an extended gas envelope as they lie in a region of parameter space where high-altitude cloud/haze formation is not expected to be significant for hydrogen-dominated atmospheres. Many denser atmospheres remain consistent with the featureless transmission spectrum---from a cloud-free water vapour atmosphere to a Venus-like atmosphere.Comment: Early release to inform further the upcoming review of HST's Cycle 24 proposal
    corecore