13,519 research outputs found
Further evaluation of the constrained least squares electromagnetic compensation method
Technologies exist for construction of antennas with adaptive surfaces that can compensate for many of the larger distortions caused by thermal and gravitational forces. However, as the frequency and size of reflectors increase, the subtle surface errors become significant and degrade the overall electromagnetic performance. Electromagnetic (EM) compensation through an adaptive feed array offers means for mitigation of surface distortion effects. Implementation of EM compensation is investigated with the measured surface errors of the NASA 15 meter hoop/column reflector antenna. Computer simulations are presented for: (1) a hybrid EM compensation technique, and (2) evaluating the performance of a given EM compensation method when implemented with discretized weights
Asset Pricing With Multiplicative Habit and Power-Expo Preferences (Subsequently published in "Economics Letters", 2007, 94(3), 319-325. )
Multiplicative habit introduces an additional consumption risk as a determinant of equity premium, and allows time preference and habit strength, in addition to risk aversion, to affect "price of risk". A model combining multiplicative habit and power-expo preferences cannot be rejected.
Fertility, Volatility, and Growth
Empirically, growth rates are negatively correlated with birth rates; they are also correlated with production risk. We argue that these stylized facts are related, and arise jointly from the decision of how many children to have in a risky economic environment.stochastic growth; fertility; volatility
"Asset Pricing With Multiplicative Habit and Power-Expo Preferences"
Multiplicative habit introduces an additional consumption risk as a determinant of equity premium, and allows time preference and habit strength, in addition to risk aversion, to affect "price of risk". A model combining multiplicative habit and power-expo preferences cannot be rejected.
The Spirit of Capitalism and Excess Smoothness
In a recent paper [Luo, Smith, and Zou (2009)] we showed that the spirit of capitalism could in theory resolve the two fundamental anomalies of modern consumption theory, excess sensitivity and excess smoothness. However, that basic model could not plausibly explain the empirical magnitude of excess smoothness. In this paper we develop two extensions of the model ¡ª one with transitory and permanent shocks to income, the other with a stochastic interest rate ¡ª that where the spirit of capitalism can explain excess smoothness.The spirit of capitalism, Consumption smoothing, Interest rate risk
Detection of bondline delaminations in multilayer structures with lossy components
The detection of bondline delaminations in multilayer structures using ultrasonic reflection techniques is a generic problem in adhesively bonded composite structures such as the Space Shuttles's Solid Rocket Motors (SRM). Standard pulse echo ultrasonic techniques do not perform well for a composite resonator composed of a resonant layer combined with attenuating layers. Excessive ringing in the resonant layer tends to mask internal echoes emanating from the attenuating layers. The SRM is made up of a resonant steel layer backed by layers of adhesive, rubber, liner and fuel, which are ultrasonically attenuating. The structure's response is modeled as a lossy ultrasonic transmission line. The model predicts that the acoustic response of the system is sensitive to delaminations at the interior bondlines in a few narrow frequency bands. These predictions are verified by measurements on a fabricated system. Successful imaging of internal delaminations is sensitive to proper selection of the interrogating frequency. Images of fabricated bondline delaminations are presented based on these studies
Rapid detection and quantification of features such as damage or flaws in composite and metallic structures
An apparatus, system, and method for non-destructible evaluation (NDE) of a material use thermography to rapidly detect and/or generally locate a feature such as, for example, damage or a defect in the material. The apparatus, system, and method also use ultrasound to specifically locate the feature in the material for quantification and/or evaluation either by an operator or by an external device suited for such purpose. Accordingly, the apparatus, system and method are particularly useful for NDE in applications such as the analysis of the structure of an aircraft, for example, in which the scale of the material to be analyzed is large, thus requiring the rapid NDE afforded by thermography, and in which quantification and/or evaluation of a feature must be performed with precision, thus requiring the relatively high-resolution NDE afforded by ultrasound
The Three-Dimensional Structure of Interior Ejecta in Cassiopeia A at High Spectral Resolution
We used the Spitzer Space Telescope's Infrared Spectrograph to create a high
resolution spectral map of the central region of the Cassiopeia A supernova
remnant, allowing us to make a Doppler reconstruction of its 3D structure. The
ejecta responsible for this emission have not yet encountered the remnant's
reverse shock or the circumstellar medium, making it an ideal laboratory for
exploring the dynamics of the supernova explosion itself. We observe that the
O, Si, and S ejecta can form both sheet-like structures as well as filaments.
Si and O, which come from different nucleosynthetic layers of the star, are
observed to be coincident in velocity space in some regions, and separated by
500 km/s or more in others. Ejecta traveling toward us are, on average, ~900
km/s slower than the material traveling away from us. We compare our
observations to recent supernova explosion models and find that no single model
can simultaneously reproduce all the observed features. However, models of
different supernova explosions can collectively produce the observed geometries
and structures of the interior emission. We use the results from the models to
address the conditions during the supernova explosion, concentrating on
asymmetries in the shock structure. We also predict that the back surface of
Cassiopeia A will begin brightening in ~30 years, and the front surface in ~100
years.Comment: 35 pages, 16 figures, accepted to Ap
- …