6,382 research outputs found
Theoretical analysis of continuously driven dissipative solid-state qubits
We study a realistic model for driven qubits using the numerical solution of
the Bloch-Redfield equation as well as analytical approximations using a
high-frequency scheme. Unlike in idealized rotating-wave models suitable for
NMR or quantum optics, we study a driving term which neither is orthogonal to
the static term nor leaves the adiabatic energy value constant. We investigate
the underlying dynamics and analyze the spectroscopy peaks obtained in recent
experiments. We show, that unlike in the rotating-wave case, this system
exhibits nonlinear driving effects.We study the width of spectroscopy peaks and
show, how a full analysis of the parameters of the system can be performed by
comparing the first and second resonance. We outline the limitations of the NMR
linewidth formula at low temperature and show, that spectrocopic peaks
experience a strong shift which goes much beyond the Bloch-Siegert shift of the
Eigenfrequency.Comment: Accepted for publication in Phys. Rev.
Counteracting systems of diabaticities using DRAG controls: The status after 10 years
The task of controlling a quantum system under time and bandwidth limitations
is made difficult by unwanted excitations of spectrally neighboring energy
levels. In this article we review the Derivative Removal by Adiabatic Gate
(DRAG) framework. DRAG is a multi-transition variant of counterdiabatic
driving, where multiple low-lying gapped states in an adiabatic evolution can
be avoided simultaneously, greatly reducing operation times compared to the
adiabatic limit. In its essence, the method corresponds to a convergent version
of the superadiabatic expansion where multiple counterdiabaticity conditions
can be met simultaneously. When transitions are strongly crowded, the system of
equations can instead be favorably solved by an average Hamiltonian (Magnus)
expansion, suggesting the use of additional sideband control. We give some
examples of common systems where DRAG and variants thereof can be applied to
improve performance.Comment: 7 pages, 2 figure
- …
