6,382 research outputs found

    Theoretical analysis of continuously driven dissipative solid-state qubits

    Full text link
    We study a realistic model for driven qubits using the numerical solution of the Bloch-Redfield equation as well as analytical approximations using a high-frequency scheme. Unlike in idealized rotating-wave models suitable for NMR or quantum optics, we study a driving term which neither is orthogonal to the static term nor leaves the adiabatic energy value constant. We investigate the underlying dynamics and analyze the spectroscopy peaks obtained in recent experiments. We show, that unlike in the rotating-wave case, this system exhibits nonlinear driving effects.We study the width of spectroscopy peaks and show, how a full analysis of the parameters of the system can be performed by comparing the first and second resonance. We outline the limitations of the NMR linewidth formula at low temperature and show, that spectrocopic peaks experience a strong shift which goes much beyond the Bloch-Siegert shift of the Eigenfrequency.Comment: Accepted for publication in Phys. Rev.

    Counteracting systems of diabaticities using DRAG controls: The status after 10 years

    Full text link
    The task of controlling a quantum system under time and bandwidth limitations is made difficult by unwanted excitations of spectrally neighboring energy levels. In this article we review the Derivative Removal by Adiabatic Gate (DRAG) framework. DRAG is a multi-transition variant of counterdiabatic driving, where multiple low-lying gapped states in an adiabatic evolution can be avoided simultaneously, greatly reducing operation times compared to the adiabatic limit. In its essence, the method corresponds to a convergent version of the superadiabatic expansion where multiple counterdiabaticity conditions can be met simultaneously. When transitions are strongly crowded, the system of equations can instead be favorably solved by an average Hamiltonian (Magnus) expansion, suggesting the use of additional sideband control. We give some examples of common systems where DRAG and variants thereof can be applied to improve performance.Comment: 7 pages, 2 figure
    corecore