81 research outputs found

    Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data

    Full text link
    Recurrent neural networks (RNNs) are nonlinear dynamical models commonly used in the machine learning and dynamical systems literature to represent complex dynamical or sequential relationships between variables. More recently, as deep learning models have become more common, RNNs have been used to forecast increasingly complicated systems. Dynamical spatio-temporal processes represent a class of complex systems that can potentially benefit from these types of models. Although the RNN literature is expansive and highly developed, uncertainty quantification is often ignored. Even when considered, the uncertainty is generally quantified without the use of a rigorous framework, such as a fully Bayesian setting. Here we attempt to quantify uncertainty in a more formal framework while maintaining the forecast accuracy that makes these models appealing, by presenting a Bayesian RNN model for nonlinear spatio-temporal forecasting. Additionally, we make simple modifications to the basic RNN to help accommodate the unique nature of nonlinear spatio-temporal data. The proposed model is applied to a Lorenz simulation and two real-world nonlinear spatio-temporal forecasting applications

    Ensemble Kalman methods for high-dimensional hierarchical dynamic space-time models

    Full text link
    We propose a new class of filtering and smoothing methods for inference in high-dimensional, nonlinear, non-Gaussian, spatio-temporal state-space models. The main idea is to combine the ensemble Kalman filter and smoother, developed in the geophysics literature, with state-space algorithms from the statistics literature. Our algorithms address a variety of estimation scenarios, including on-line and off-line state and parameter estimation. We take a Bayesian perspective, for which the goal is to generate samples from the joint posterior distribution of states and parameters. The key benefit of our approach is the use of ensemble Kalman methods for dimension reduction, which allows inference for high-dimensional state vectors. We compare our methods to existing ones, including ensemble Kalman filters, particle filters, and particle MCMC. Using a real data example of cloud motion and data simulated under a number of nonlinear and non-Gaussian scenarios, we show that our approaches outperform these existing methods
    corecore