58 research outputs found

    Learning the Probability of Activation in the Presence of Latent Spreaders

    Full text link
    When an infection spreads in a community, an individual's probability of becoming infected depends on both her susceptibility and exposure to the contagion through contact with others. While one often has knowledge regarding an individual's susceptibility, in many cases, whether or not an individual's contacts are contagious is unknown. We study the problem of predicting if an individual will adopt a contagion in the presence of multiple modes of infection (exposure/susceptibility) and latent neighbor influence. We present a generative probabilistic model and a variational inference method to learn the parameters of our model. Through a series of experiments on synthetic data, we measure the ability of the proposed model to identify latent spreaders, and predict the risk of infection. Applied to a real dataset of 20,000 hospital patients, we demonstrate the utility of our model in predicting the onset of a healthcare associated infection using patient room-sharing and nurse-sharing networks. Our model outperforms existing benchmarks and provides actionable insights for the design and implementation of targeted interventions to curb the spread of infection.Comment: To appear in AAA1-1

    Leveraging an Alignment Set in Tackling Instance-Dependent Label Noise

    Full text link
    Noisy training labels can hurt model performance. Most approaches that aim to address label noise assume label noise is independent from the input features. In practice, however, label noise is often feature or \textit{instance-dependent}, and therefore biased (i.e., some instances are more likely to be mislabeled than others). E.g., in clinical care, female patients are more likely to be under-diagnosed for cardiovascular disease compared to male patients. Approaches that ignore this dependence can produce models with poor discriminative performance, and in many healthcare settings, can exacerbate issues around health disparities. In light of these limitations, we propose a two-stage approach to learn in the presence instance-dependent label noise. Our approach utilizes \textit{\anchor points}, a small subset of data for which we know the observed and ground truth labels. On several tasks, our approach leads to consistent improvements over the state-of-the-art in discriminative performance (AUROC) while mitigating bias (area under the equalized odds curve, AUEOC). For example, when predicting acute respiratory failure onset on the MIMIC-III dataset, our approach achieves a harmonic mean (AUROC and AUEOC) of 0.84 (SD [standard deviation] 0.01) while that of the next best baseline is 0.81 (SD 0.01). Overall, our approach improves accuracy while mitigating potential bias compared to existing approaches in the presence of instance-dependent label noise

    Counterfactual-Augmented Importance Sampling for Semi-Offline Policy Evaluation

    Full text link
    In applying reinforcement learning (RL) to high-stakes domains, quantitative and qualitative evaluation using observational data can help practitioners understand the generalization performance of new policies. However, this type of off-policy evaluation (OPE) is inherently limited since offline data may not reflect the distribution shifts resulting from the application of new policies. On the other hand, online evaluation by collecting rollouts according to the new policy is often infeasible, as deploying new policies in these domains can be unsafe. In this work, we propose a semi-offline evaluation framework as an intermediate step between offline and online evaluation, where human users provide annotations of unobserved counterfactual trajectories. While tempting to simply augment existing data with such annotations, we show that this naive approach can lead to biased results. Instead, we design a new family of OPE estimators based on importance sampling (IS) and a novel weighting scheme that incorporate counterfactual annotations without introducing additional bias. We analyze the theoretical properties of our approach, showing its potential to reduce both bias and variance compared to standard IS estimators. Our analyses reveal important practical considerations for handling biased, noisy, or missing annotations. In a series of proof-of-concept experiments involving bandits and a healthcare-inspired simulator, we demonstrate that our approach outperforms purely offline IS estimators and is robust to imperfect annotations. Our framework, combined with principled human-centered design of annotation solicitation, can enable the application of RL in high-stakes domains.Comment: 36 pages, 12 figures, 5 tables. NeurIPS 2023. Code available at https://github.com/MLD3/CounterfactualAnnot-SemiOP

    Learning Credible Models

    Full text link
    In many settings, it is important that a model be capable of providing reasons for its predictions (i.e., the model must be interpretable). However, the model's reasoning may not conform with well-established knowledge. In such cases, while interpretable, the model lacks \textit{credibility}. In this work, we formally define credibility in the linear setting and focus on techniques for learning models that are both accurate and credible. In particular, we propose a regularization penalty, expert yielded estimates (EYE), that incorporates expert knowledge about well-known relationships among covariates and the outcome of interest. We give both theoretical and empirical results comparing our proposed method to several other regularization techniques. Across a range of settings, experiments on both synthetic and real data show that models learned using the EYE penalty are significantly more credible than those learned using other penalties. Applied to a large-scale patient risk stratification task, our proposed technique results in a model whose top features overlap significantly with known clinical risk factors, while still achieving good predictive performance

    Forecasting with Sparse but Informative Variables: A Case Study in Predicting Blood Glucose

    Full text link
    In time-series forecasting, future target values may be affected by both intrinsic and extrinsic effects. When forecasting blood glucose, for example, intrinsic effects can be inferred from the history of the target signal alone (\textit{i.e.} blood glucose), but accurately modeling the impact of extrinsic effects requires auxiliary signals, like the amount of carbohydrates ingested. Standard forecasting techniques often assume that extrinsic and intrinsic effects vary at similar rates. However, when auxiliary signals are generated at a much lower frequency than the target variable (e.g., blood glucose measurements are made every 5 minutes, while meals occur once every few hours), even well-known extrinsic effects (e.g., carbohydrates increase blood glucose) may prove difficult to learn. To better utilize these \textit{sparse but informative variables} (SIVs), we introduce a novel encoder/decoder forecasting approach that accurately learns the per-timepoint effect of the SIV, by (i) isolating it from intrinsic effects and (ii) restricting its learned effect based on domain knowledge. On a simulated dataset pertaining to the task of blood glucose forecasting, when the SIV is accurately recorded our approach outperforms baseline approaches in terms of rMSE (13.07 [95% CI: 11.77,14.16] vs. 14.14 [12.69,15.27]). In the presence of a corrupted SIV, the proposed approach can still result in lower error compared to the baseline but the advantage is reduced as noise increases. By isolating their effects and incorporating domain knowledge, our approach makes it possible to better utilize SIVs in forecasting.Comment: 10 pages, 9 figures, 5 tables, accepted to AAAI2
    • …
    corecore