21 research outputs found

    Neonatal Diagnostics: Toward Dynamic Growth Charts of Neuromotor Control

    Get PDF
    © 2016 Torres, Smith, Mistry, Brincker and Whyatt. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).The current rise of neurodevelopmental disorders poses a critical need to detect risk early in order to rapidly intervene. One of the tools pediatricians use to track development is the standard growth chart. The growth charts are somewhat limited in predicting possible neurodevelopmental issues. They rely on linear models and assumptions of normality for physical growth data – obscuring key statistical information about possible neurodevelopmental risk in growth data that actually has accelerated, non-linear rates-of-change and variability encompassing skewed distributions. Here, we use new analytics to profile growth data from 36 newborn babies that were tracked longitudinally for 5 months. By switching to incremental (velocity-based) growth charts and combining these dynamic changes with underlying fluctuations in motor performance – as the transition from spontaneous random noise to a systematic signal – we demonstrate a method to detect very early stunting in the development of voluntary neuromotor control and to flag risk of neurodevelopmental derail.Peer reviewedFinal Published versio

    A Wii Bit of Fun: A Novel Platform to Deliver Effective Balance Training to Older Adults

    Get PDF
    BACKGROUND: Falls and fall-related injuries are symptomatic of an aging population. This study aimed to design, develop, and deliver a novel method of balance training, using an interactive game-based system to promote engagement, with the inclusion of older adults at both high and low risk of experiencing a fall.STUDY DESIGN: Eighty-two older adults (65 years of age and older) were recruited from sheltered accommodation and local activity groups. Forty volunteers were randomly selected and received 5 weeks of balance game training (5 males, 35 females; mean, 77.18 ± 6.59 years), whereas the remaining control participants recorded levels of physical activity (20 males, 22 females; mean, 76.62 ± 7.28 years). The effect of balance game training was measured on levels of functional balance and balance confidence in individuals with and without quantifiable balance impairments.RESULTS: Balance game training had a significant effect on levels of functional balance and balance confidence (P Peer reviewedFinal Published versio

    Bases expert statement on the use of music for movement among people with Parkinson's

    Get PDF
    First published in The Sport and Exercise Scientist, February 2020, Issue 63. Published by the British Association of Sport and Exercise Sciences – www.bases.org.uk.Music is an artistic auditory stimulus that unfolds over time. It can prime specific actions and prompt engagement in physical activity as well as heighten motivation during motor tasks (Karageorghis, 2020). Contrastingly, it can be used to downregulate arousal to facilitate the transition from an active to a sedentary state or to ameliorate anxiety. In therapeutic applications, musical features such as rhythm, melody and harmony have been shown to elicit psychological and physiological changes (Thaut & Hoemberg, 2014). Parkinson’s is a degenerative neurological condition in which the loss of dopamine neurons results in impaired initiation and control of movement, with common symptoms including tremor, postural instability and gait disturbance. There are also non-motor effects that include apathy, anxiety and depression. Medication does not alleviate all manifestations of the condition and there is presently no known cure (Obeso et al., 2017). It is notable that people with Parkinson’s are estimated to be 30% less active than agematched peers (Ramaswamy et al., 2018). Nonetheless, evidence is emerging that a range of exercise-based and social activities that involve musical engagement can serve to address the common symptoms and enhance quality of life (Thaut & Hoemberg, 2014). This statement brings together an international interdisciplinary team to outline what is known about music-related applications for people with Parkinson’s, and to provide recommendations for exercise and health practitioners.Peer reviewe

    Stochastic signatures of involuntary head micro-movements can be used to classify females of ABIDE into different subtypes of neurodevelopmental disorders.

    Get PDF
    © 2017 Torres, Mistry, Caballero and Whyatt. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).Background: The approximate 5:1 male to female ratio in clinical detection of Autism Spectrum Disorder (ASD) prevents research from characterizing the female phenotype. Current open access repositories [such as those in the Autism Brain Imaging Data Exchange (ABIDE I-II)] contain large numbers of females to help begin providing a new characterization of females on the autistic spectrum. Here we introduce new methods to integrate data in a scale-free manner from continuous biophysical rhythms of the nervous systems and discrete (ordinal) observational scores. Methods: New data-types derived from image-based involuntary head motions and personalized statistical platform were combined with a data-driven approach to unveil sub-groups within the female cohort. Further, to help refine the clinical DSM-based ASD vs. Asperger's Syndrome (AS) criteria, distributional analyses of ordinal score data from Autism Diagnostic Observation Schedule (ADOS)-based criteria were used on both the female and male phenotypes. Results: Separate clusters were automatically uncovered in the female cohort corresponding to differential levels of severity. Specifically, the AS-subgroup emerged as the most severely affected with an excess level of noise and randomness in the involuntary head micro-movements. Extending the methods to characterize males of ABIDE revealed ASD-males to be more affected than AS-males. A thorough study of ADOS-2 and ADOS-G scores provided confounding results regarding the ASD vs. AS male comparison, whereby the ADOS-2 rendered the AS-phenotype worse off than the ASD-phenotype, while ADOS-G flipped the results. Females with AS scored higher on severity than ASD-females in all ADOS test versions and their scores provided evidence for significantly higher severity than males. However, the statistical landscapes underlying female and male scores appeared disparate. As such, further interpretation of the ADOS data seems problematic, rather suggesting the critical need to develop an entirely new metric to measure social behavior in females. Conclusions: According to the outcome of objective, data-driven analyses and subjective clinical observation, these results support the proposition that the female phenotype is different. Consequently the “social behavioral male ruler” will continue to mask the female autistic phenotype. It is our proposition that new observational behavioral tests ought to contain normative scales, be statistically sound and combined with objective data-driven approaches to better characterize the females across the human lifespan.Peer reviewe

    Bodily Expression of Social Initiation Behaviors in ASC and non-ASC children: Mixed Reality vs. LEGO Game Play

    Get PDF
    This study is part of a larger project that showed the potential of our mixed reality (MR) system in fostering social initiation behaviors in children with Autism Spectrum Condition (ASC). We compared it to a typical social intervention strategy based on construction tools, where both mediated a face-to-face dyadic play session between an ASC child and a non-ASC child. In this study, our first goal is to show that an MR platform can be utilized to alter the nonverbal body behavior between ASC and non-ASC during social interaction as much as a traditional therapy setting (LEGO). A second goal is to show how these body cues differ between ASC and non-ASC children during social initiation in these two platforms. We present our first analysis of the body cues generated under two conditions in a repeated-measures design. Body cue measurements were obtained through skeleton information and characterized in the form of spatio-temporal features from both subjects individually (e.g. distances between joints and velocities of joints), and interpersonally (e.g. proximity and visual focus of attention). We used machine learning techniques to analyze the visual data of eighteen trials of ASC and non-ASC dyads. Our experiments showed that: (i) there were differences between ASC and non-ASC bodily expressions, both at individual and interpersonal level, in LEGO and in the MR system during social initiation; (ii) the number of features indicating differences between ASC and non-ASC in terms of nonverbal behavior during initiation were higher in the MR system as compared to LEGO; and (iii) computational models evaluated with combination of these different features enabled the recognition of social initiation type (ASC or non-ASC) from body features in LEGO and in MR settings. We did not observe significant differences between the evaluated models in terms of performance for LEGO and MR environments. This might be interpreted as the MR system encouraging similar nonverbal behaviors in children, perhaps more similar than the LEGO environment, as the performance scores in the MR setting are lower as compared to the LEGO setting. These results demonstrate the potential benefits of full body interaction and MR settings for children with ASC.EPSR

    Sensory-motor problems in Autism

    Get PDF
    Despite being largely characterised as a social and cognitive disorder, strong evidence indicates the presence of significant sensory-motor problems in Autism Spectrum Disorder (ASD). This paper outlines our progression from initial, broad assessment using the Movement Assessment Battery for Children (M-ABC) to subsequent targeted kinematic assessment. In particular, pronounced ASD impairment seen in the broad categories of manual dexterity and ball skills was found to be routed in specific difficulties on isolated tasks, which were translated into focused experimental assessment. Kinematic results from both subsequent studies highlight impaired use of perception-action coupling to guide, adapt and tailor movement to task demands, resulting in inflexible and rigid motor profiles. In particular difficulties with the use of temporal adaption are shown, with "hyperdexterity" witnessed in ballistic movement profiles, often at the cost of spatial accuracy and task performance. By linearly progressing from the use of a standardised assessment tool to targeted kinematic assessment, clear and defined links are drawn between measureable difficulties and underlying sensory-motor assessment. Results are specifically viewed in-light of perception-action coupling and its role in early infant development suggesting that rather than being 'secondary' level impairment, sensory-motor problems may be fundamental in the progression of ASD. This logical and systematic process thus allows a further understanding into the potential route of observable motor problems in ASD; a vital step if underlying motor problems are to be considered a fundamental aspect of autism and allow a route of non-invasive preliminary diagnosis.Peer reviewe

    Developmental differences across the lifespan in the use of perceptual information to guide action-based decisions

    Get PDF
    © Crown 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, http://creativecommons.org/licenses/by/4.0/.Perceptual information about unfolding events is important for guiding decisions about when and how to move in real-world action situations. As an exemplary case, road-crossing is a perceptual-motor task where age has been shown to be a strong predictor of risk due to errors in action-based decisions. The present study investigated age differences between three age groups (Children: 10–12 years old; Adults: 19–39 years old; Older Adults: 65 + year olds) in the use of perceptual information for selection, timing, and control of action when crossing a two-way street in an immersive, interactive virtual reality environment. Adults and children selected gaps to cross that were consistent with the use of a time-based information variable (tau), whereas older adults tuned less into the time-based variable (tau) to guide road-crossing decisions. For action initiation and control, children and adults also showed a strong ability to precisely time their entry with respect to the lead vehicle maximising the available time to cross and coordinating walking movements with the tail vehicle to ensure they were not on a collision course. In contrast, older adults delayed action initiation and showed difficulty coordinating self-movement with the approaching vehicle. This study and its results tie together age-based differences in the three components of action decision-making (selection, timing and control) within a unified framework based on perceptual information. The implications of these age-related differences in action decisions and crossing behaviours are discussed in the context of road safety.Peer reviewedFinal Published versio
    corecore