1,122 research outputs found
Contrast and phase-shift of a trapped atom interferometer using a thermal ensemble with internal state labelling
We report a theoretical study of a double-well Ramsey interferometer using
internal state labelling. We consider the use of a thermal ensemble of cold
atoms rather than a Bose-Einstein condensate to minimize the effects of atomic
interactions. To maintain a satisfactory level of coherence in this case, a
high degree of symmetry is required between the two arms of the interferometer.
Assuming that the splitting and recombination processes are adiabatic, we
theoretically derive the phase-shift and the contrast of such an interferometer
in the presence of gravity or an acceleration field. We also consider using a
"shortcut to adiabaticity" protocol to speed up the splitting process and
discuss how such a procedure affects the phase shift and contrast. We find that
the two procedures lead to phase-shifts of the same form.Comment: 12 pages, 1 figur
Experimental evidence for the breakdown of a Hartree-Fock approach in a weakly interacting Bose gas
We study the formation of a quasi-condensate in a nearly one dimensional,
weakly interacting trapped atomic Bose gas. We show that a Hartree Fock
(mean-field) approach fails to explain the presence of the quasi-condensate in
the center of the cloud: the quasi-condensate appears through an
interaction-driven cross-over and not a saturation of the excited states.
Numerical calculations based on Bogoliubov theory give an estimate of the
cross-over density in agreement with experimental results.Comment: submitted to Phys. Rev. Letter
Bose-Einstein condensation of metastable helium: some experimental aspects
We describe our recent realization of BEC using metastable helium. All
detection is done with a micruchannel plate which detects the metastables or
ions coming from the trapped atom cloud. This discussion emphasizes some of the
diagnostic experiments which were necessary to quantitatively analyse our
results.Comment: 5 pages, 3 figure
Quantum signature of analog Hawking radiation in momentum space
We consider a sonic analog of a black hole realized in the one-dimensional
flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that
one- and two-body momentum distributions accessible by present-day experimental
techniques provide clear direct evidence (i) of the occurrence of a sonic
horizon, (ii) of the associated acoustic Hawking radiation and (iii) of the
quantum nature of the Hawking process. The signature of the quantum behavior
persists even at temperatures larger than the chemical potential
Hanbury Brown and Twiss correlations in atoms scattered from colliding condensates
Low energy elastic scattering between clouds of Bose condensed atoms leads to
the well known s-wave halo with atoms emerging in all directions from the
collision zone. In this paper we discuss the emergence of Hanbury Brown and
Twiss coincidences between atoms scattered in nearly parallel directions. We
develop a simple model that explains the observations in terms of an
interference involving two pairs of atoms each associated with the elementary s
wave scattering process.Comment: Minor corrections. reference update
Fast production of Bose-Einstein condensates of metastable Helium
We report on the Bose-Einstein condensation of metastable Helium-4 atoms
using a hybrid approach, consisting of a magnetic quadrupole and a crossed
optical dipole trap. In our setup we cross the phase transition with 2x10^6
atoms, and we obtain pure condensates of 5x10^5 atoms in the optical trap. This
novel approach to cooling Helium-4 provides enhanced cycle stability, large
optical access to the atoms and results in production of a condensate every 6
seconds - a factor 3 faster than the state-of-the-art. This speed-up will
dramatically reduce the data acquisition time needed for the measurement of
many particle correlations, made possible by the ability of metastable Helium
to be detected individually
Hanbury Brown Twiss effect for ultracold quantum gases
We have studied 2-body correlations of atoms in an expanding cloud above and
below the Bose-Einstein condensation threshold. The observed correlation
function for a thermal cloud shows a bunching behavior, while the correlation
is flat for a coherent sample. These quantum correlations are the atomic
analogue of the Hanbury Brown Twiss effect. We observe the effect in three
dimensions and study its dependence on cloud size.Comment: Figure 1 availabl
Thermal counting statistics in an atomic two-mode squeezed vacuum state
We measure the population distribution in one of the atomic twin beams
generated by four-wave mixing in an optical lattice.
Although the produced two-mode squeezed vacuum state is pure, each individual
mode is described as a statistical mixture.
We confirm the prediction that the particle number follows an exponential
distribution when only one spatio-temporal mode is selected.
We also show that this distribution accounts well for the contrast of an
atomic Hong--Ou--Mandel experiment.
These experiments constitute an important validation of our twin beam source
in view of a future test of a Bell inequalities.Comment: SciPost submissio
Solution of Orthopositronium lifetime Puzzle
The intrinsic decay rate of orthopositronium formed in powder
is measured using the direct correction method such that the time
dependence of the pick-off annihilation rate is precisely determined. The decay
rate of orthopositronium is found to be , which is consistent with our previous measurements with
about twice the accuracy. Results agree well with the QED
prediction, and also with a result reported very recently using nanoporous
film
- …