23 research outputs found

    Silicon-on-insulator microring resonators for photonic biosensing applications

    Get PDF
    Silicon-on-insulator microring resonators have proven to be an excellent platform for label-free nanophotonic biosensors. The high index contrast of the silicon-on-insulator waveguides allows for fabrication of micrometer size sensors. Their small size combined with high sensitivity make them ideal candidates for integration in sensing arrays as a multiplexed DNA detection platform. By chemically modifying the sensor surface, the microrings can provide sequence selective DNA detection. However, the high index contrast also limits the quality of the resonances by introducing an intrinsic mode-splitting by coupling the degenerate resonator modes. This severely deteriorates the quality of the output signal. The quality of the resonances is of utmost importance to determine the performance of the microrings as a biosensor. We will suggest an integrated interferometric approach to give access to the unsplit, high-quality normal modes of the microring resonator

    Optimizations of a ring resonator biosensor platform for applications in DNA detection

    Get PDF

    Investigation of glucose diffusion using an optofluidic silicon chips

    Get PDF

    Silicon photonics biosensing: different packaging platforms and applications

    Get PDF
    We present two different platforms integrating silicon photonic biosensors. One is based on integration with reaction tubes to be compatible with traditional lab approaches. The other uses through-chip fluidics in order to achieve better mixing of the analyte

    Ring Resonators With Vertically Coupling Grating for Densely Multiplexed Applications

    Full text link

    Implementation of Surface Gratings for Reduced Coupling Noise in Silicon-on-Insulator Circuits

    Full text link

    Ring resonator based SOI biosensors

    Get PDF
    In this paper, two recent advances in silicon ring resonator biosensors are presented. First, we address the problem that due to the high index contrast, small deviations from perfect symmetry lift the degeneracy of the normal resonator mode. This severely deteriorates the quality of the output signal. To address this, we discuss an integrated interferometric approach to give access to the unsplit, high-quality normal modes of the microring resonator. Second, we demonstrate how digital microfluidics can be used for effective fluid delivery to nanophotonic microring resonator sensors fully constructed in SOI
    corecore