4 research outputs found

    Surface pressure and seated discomfort

    Get PDF
    This thesis presents experimental studies on the relationship between external surface pressure and the perceived discomfort in seated body areas, in particular those under the ischial tuberosity and the mid-thigh. It consists of three parts. Part one provides a comprehensive review of the existing knowledge concerning seated discomfort. The current assessment methods of seated discomfort are summarised, with the emphasis on the validity and reliability of the rating scale methods. The implications of surface pressure to seated people are outlined from the perspective of clinical, sensory and perceptual, and ergonomics domains. A brief review of current technologies for pressure measurement is also provided. Part two presents the experimental work. It starts with an exploratory assessment model of seated discomfort, based on pressure measures. Two preliminary experiments were conducted to test the feasibility of the model. Three further psychophysical experiments were carried out to test the validity and reliability of the selected six rating scales, and to investigate the effects of surface pressure levels on perceived pressure intensity and discomfort in the seated mid-thigh and ischial tuberosity areas. Surface pressure stimuli were applied to a seated body area of 3,318 mm2• Subjects judged three items of sensations: pressure intensity, local discomfort, and the overall discomfort. The main results are: I) A 50-point category partitioning scale was identified to be most sensitive and reliable for scaling pressure intensity and discomfort; 2) Sensations of pressure intensity and discomfort linearly increase with the logarithm of the pressure stimulus level; 3) Thresholds for pressure intensity and discomfort in the seated ischium and thigh areas were derived; 4) The sensitivity of intensity and discomfort to the stimuli differs between the locations .The mid-thigh is more sensitive to surface pressure than the ischium. It is considered that this is due to differences in load adaptation, body tissue composition and deformation; 5) Local pressure discomfort dominates the overall discomfort, and ratings of the local discomfort are higher than those of overall discomfort. Part three discusses the findings from this research. Four integration models of the overall discomfort from local discomfort components were proposed. The Weighted Average model asserts that the overall discomfort is a linear combination of local discomfort components, and that the weight of each local discomfort is the proportion of this component out of the arithmetic sum of all local discomfort components. The mechanisms of discomfort were analysed. The fundamental research presented herein uniquely contributes to the knowledge on the human perception of seated pressure discomfort. Although this is not application based, the findings contribute to the methods of seating comfort evaluation as well as provide criteria by which seat designers may formulate design requirements

    Table_2_Analysis of the spatial-temporal distribution characteristics of hepatitis E in Jiangsu province from 2005 to 2020.DOC

    No full text
    ObjectiveThis study attempts to analyze the spatial clustering and spatial-temporal distribution characteristics of hepatitis E (HE) at the county (city and district) level in Jiangsu province to provide a scientific basis for the prevention and control of HE.MethodThe information on HE cases reported in the Chinese Center for Disease Control and Prevention Information System from 2005 to 2020 was collected for spatial autocorrelation analysis and spatial-temporal clustering analysis.ResultFrom 2005 to 2020, 48,456 HE cases were reported in Jiangsu province, with an average annual incidence rate of 3.87/100,000. Male cases outnumbered female cases (2.46:1), and the incidence was highest in the 30–70 years of age group (80.50%). Farmers accounted for more than half of all cases (59.86%), and in terms of the average annual incidence, the top three cities were all in Zhenjiang city. Spatial autocorrelation analysis showed that Global Moran's I of HE incidence varied from 0.232 to 0.513 for the years. From 2005 to 2020, 31 counties (cities and districts) had high and statistically significant HE incidence, and two clustering areas were detected by spatial-temporal scanning.ConclusionHE incidence in Jiangsu province from 2005 to 2020 was stable, with age and gender differences, regional clustering, and spatial-temporal clustering. Further investigation of HE clustering areas is necessary to formulate corresponding targeted prevention and control measures.</p

    Table_1_Analysis of the spatial-temporal distribution characteristics of hepatitis E in Jiangsu province from 2005 to 2020.DOC

    No full text
    ObjectiveThis study attempts to analyze the spatial clustering and spatial-temporal distribution characteristics of hepatitis E (HE) at the county (city and district) level in Jiangsu province to provide a scientific basis for the prevention and control of HE.MethodThe information on HE cases reported in the Chinese Center for Disease Control and Prevention Information System from 2005 to 2020 was collected for spatial autocorrelation analysis and spatial-temporal clustering analysis.ResultFrom 2005 to 2020, 48,456 HE cases were reported in Jiangsu province, with an average annual incidence rate of 3.87/100,000. Male cases outnumbered female cases (2.46:1), and the incidence was highest in the 30–70 years of age group (80.50%). Farmers accounted for more than half of all cases (59.86%), and in terms of the average annual incidence, the top three cities were all in Zhenjiang city. Spatial autocorrelation analysis showed that Global Moran's I of HE incidence varied from 0.232 to 0.513 for the years. From 2005 to 2020, 31 counties (cities and districts) had high and statistically significant HE incidence, and two clustering areas were detected by spatial-temporal scanning.ConclusionHE incidence in Jiangsu province from 2005 to 2020 was stable, with age and gender differences, regional clustering, and spatial-temporal clustering. Further investigation of HE clustering areas is necessary to formulate corresponding targeted prevention and control measures.</p
    corecore