268 research outputs found

    ANN-based robust DC fault protection algorithm for MMC high-voltage direct current grids

    Get PDF
    Fast and reliable protection is a significant technical challenge in modular multilevel converter (MMC) based DC grids. The existing fault detection methods suffer from the difficulty in setting protective thresholds, incomplete function, insensitivity to high resistance faults and vulnerable to noise. This paper proposes an artificial neural network (ANN) based method to enable DC bus protection and DC line protection for DC grids. The transient characteristics of DC voltages are analysed during DC faults. Based on the analysis, the discrete wavelet transform (DWT) is used as an extractor of distinctive features at the input of the ANN. Both frequency-domain and time-domain components are selected as input vectors. A large number of offline data considering the impact of noise is employed to train the ANN. The outputs of the ANN are used to trigger the DC line and DC bus protections and select the faulted poles. The proposed method is tested in a four-terminal MMC based DC grid under PSCAD/EMTDC. The simulation results verify the effectiveness of the proposed method in fault identification and the selection of the faulty pole. The intelligent algorithm based protection scheme has good performance concerning selectivity, reliability, robustness to noise and fast action

    An improved DC fault protection scheme independent of boundary components for MMC based HVDC grids

    Get PDF
    For Modular Multilevel Converter (MMC) based DC grids, current-limiting reactors (CLRs) are mainly employed to suppress the fault current and provide boundary effects to detect internal faults. Thus, most existing protection schemes are highly dependent on the larger CLRs to guarantee high selectivity. However, in existing MMC based HVDC projects, the size of CLRs is restrained by the cost, weight and system stability under normal state. Thus, boundary protections may fail to detect high-resistance faults and pole-to-ground faults. To overcome these shortcomings, this paper proposes a fast and selective DC fault detection algorithm independent of boundary components. The propagation characteristics of line-mode backward traveling-waves (TW) are analyzed to identify external and internal faults. The polarities of zero-mode backward TWs are employed to select faulted poles. To detect remote faults, a pilot protection scheme based on the directional overcurrent is adopted as the complementary criterion. The detection speed of the proposed protection is fast, with a delay less than 1.1ms. Besides, it is robust to fault resistance and immune to noise. Various simulation results in PSCAD/EMTDC demonstrate that the proposed method is not affected by AC faults, fault distances and fault type

    Analysis of wide-band oscillation of hybrid MMC interfacing weak AC power system

    Get PDF
    The wide-band oscillation of the hybrid MMC induced by excessive power infeed under weak AC power system integration is analyzed in this paper. A closed-loop state-space-based time-domain small-signal model is firstly established to investigate the instability problem. Different from the findings in two-level VSCs or half-bridge MMCs, the root locus analysis and participation factor analysis in this paper reveals that the oscillation frequency and involved control loops are highly related to the operation status. When hybrid MMC operates as a rectifier, a low-frequency oscillation is observed with the d-channel control loop mainly participated. In contrast, a high-frequency oscillation occurs with a q-channel control loop mainly involved when the hybrid MMC operates as an inverter. This wide-band oscillation phenomenon is explored with the aid of two simplified loop-gain-based s-domain models, which are derived referring to the selective modal analysis approach. To suppress the oscillation, sensitivity analysis regarding the impact of parameters on the phase margin is conducted to recognize effective parameter adjustment methods. The analysis results are validated by detailed electromagnetic simulations

    Comparative study of small-signal stability under weak AC system integration for different VSCs

    Get PDF
    Voltage source converters (VSCs) with self-commutation ability are suitable to interconnect weak AC systems. This paper conducts a comparative study of the small-signal stability characteristics for three typical VSCs, namely, the two-level VSCs (TL-VSCs), the half-bridge modular multilevel converters (HB-MMCs) and the hybrid MMCs (HY-MMCs),underweak AC system integration with special consideration on both inverter and rectifier operation. The frequency responses based on impedance models are compared using the frequency-domain analysis. The oscillation frequencies and mainly participated state variables of the unstable modes are compared using root locus and participation factor analysis in time-domain. Proper parameter retuning approaches for stability enhancement are proposed. The above analysis is adequately validated by electromagnetic simulations

    Improved Extreme-Scenario Extraction Method For The Economic Dispatch Of Active Distribution Networks

    Get PDF

    Comparison of the Forest Tenure in Brazil and China

    Get PDF
    Brazil and China both have extensive forest areas in the world, making important contribution to reversal of the worldwide decline in forest. And as the world’s leading importers and exporters of timber and timber-based products, sustainable forest management for both countries are crucial for global economy and environment, so there is an intense international interest in their sustainability and well-being. Tenure arrangements functioned as powerful tools of forest policy, is not only important for economic growth, social cohesion, poverty reduction and environmental protection - it is also essential for climate change mitigation. This paper is to present and analyze the state of forest tenure in Brazil and China; then followed by a brief comparison of these two countries in terms of changing trends and reform impacts; Furthermore, it identifies some of the main challenges to the reform and points our several opportunities for extending the future forest tenure reform especially for mitigating climate change, and finally making a conclusion to widen the reach of local community tenure and to deepen the exercise of tenure rights

    Wide-Area Damping Controller of FACTS Devices for Inter-Area Oscillations Considering Communication Time Delays

    Get PDF
    The usage of remote signals obtained from a wide-area measurement system (WAMS) introduces time delays to a wide-area damping controller (WADC), which would degrade system damping and even cause system instability. The time-delay margin is defined as the maximum time delay under which a closed-loop system can remain stable. In this paper, the delay margin is introduced as an additional performance index for the synthesis of classical WADCs for flexible ac transmission systems (FACTS) devices to damp inter-area oscillations. The proposed approach includes three parts: a geometric measure approach for selecting feedback remote signals, a residue method for designing phase-compensation parameters, and a Lyapunov stability criterion and linear matrix inequalities (LMI) for calculating the delay margin and determining the gain of the WADC based on a tradeoff between damping performance and delay margin. Three case studies are undertaken based on a four-machine two-area power system for demonstrating the design principle of the proposed approach, a New England ten-machine 39-bus power system and a 16-machine 68-bus power system for verifying the feasibility on larger and more complex power systems. The simulation results verify the effectiveness of the proposed approach on providing a balance between the delay margin and the damping performance

    A single-end protection scheme for hybrid MMC HVDC grids considering the impacts of the active fault current-limiting control

    Get PDF
    In the hybrid modular multilevel converter (MMC) based high voltage direct current (HVDC) systems, the fault current can be actively suppressed by the converter itself, which endows a smaller requirement for current-limiting reactors (CLR) and a larger time margin for fault detection algorithms, comparing with the half-bridge MMC. But the robustness to fault resistance and noise disturbance of existing boundary protection schemes will be deteriorated with small CLRs. Moreover, the fast response of the fault current-limiting control will change the output DC voltage of hybrid MMC, which affects the fault characteristics and may cause mal-operation of existing protection algorithms. Thus, a single-end protection scheme considering the impacts of the active current-limiting control is proposed for the hybrid MMC based DC grids. The traveling-wave characteristics under different fault stages are analyzed to evaluate the impacts of the fault current-limiting control. In addition, a coordination protection strategy versus different fault conditions is adopted to improve reliability. Various cases in PSCAD/EMTDC are simulated to verify that the proposed method is robust to fault resistance, fault distance, power reversal, AC faults, and immune to noise
    • …
    corecore