3,393 research outputs found

    When Image Denoising Meets High-Level Vision Tasks: A Deep Learning Approach

    Full text link
    Conventionally, image denoising and high-level vision tasks are handled separately in computer vision. In this paper, we cope with the two jointly and explore the mutual influence between them. First we propose a convolutional neural network for image denoising which achieves the state-of-the-art performance. Second we propose a deep neural network solution that cascades two modules for image denoising and various high-level tasks, respectively, and use the joint loss for updating only the denoising network via back-propagation. We demonstrate that on one hand, the proposed denoiser has the generality to overcome the performance degradation of different high-level vision tasks. On the other hand, with the guidance of high-level vision information, the denoising network can generate more visually appealing results. To the best of our knowledge, this is the first work investigating the benefit of exploiting image semantics simultaneously for image denoising and high-level vision tasks via deep learning. The code is available online https://github.com/Ding-Liu/DeepDenoising.Comment: the 27th International Joint Conference on Artificial Intelligence (2018

    From Rank Estimation to Rank Approximation: Rank Residual Constraint for Image Restoration

    Full text link
    In this paper, we propose a novel approach to the rank minimization problem, termed rank residual constraint (RRC) model. Different from existing low-rank based approaches, such as the well-known nuclear norm minimization (NNM) and the weighted nuclear norm minimization (WNNM), which estimate the underlying low-rank matrix directly from the corrupted observations, we progressively approximate the underlying low-rank matrix via minimizing the rank residual. Through integrating the image nonlocal self-similarity (NSS) prior with the proposed RRC model, we apply it to image restoration tasks, including image denoising and image compression artifacts reduction. Towards this end, we first obtain a good reference of the original image groups by using the image NSS prior, and then the rank residual of the image groups between this reference and the degraded image is minimized to achieve a better estimate to the desired image. In this manner, both the reference and the estimated image are updated gradually and jointly in each iteration. Based on the group-based sparse representation model, we further provide a theoretical analysis on the feasibility of the proposed RRC model. Experimental results demonstrate that the proposed RRC model outperforms many state-of-the-art schemes in both the objective and perceptual quality
    corecore