43 research outputs found
Amortized Dynamic Cell-Probe Lower Bounds from Four-Party Communication
This paper develops a new technique for proving amortized, randomized
cell-probe lower bounds on dynamic data structure problems. We introduce a new
randomized nondeterministic four-party communication model that enables
"accelerated", error-preserving simulations of dynamic data structures.
We use this technique to prove an cell-probe
lower bound for the dynamic 2D weighted orthogonal range counting problem
(2D-ORC) with updates and queries, that holds even
for data structures with success probability. This
result not only proves the highest amortized lower bound to date, but is also
tight in the strongest possible sense, as a matching upper bound can be
obtained by a deterministic data structure with worst-case operational time.
This is the first demonstration of a "sharp threshold" phenomenon for dynamic
data structures.
Our broader motivation is that cell-probe lower bounds for exponentially
small success facilitate reductions from dynamic to static data structures. As
a proof-of-concept, we show that a slightly strengthened version of our lower
bound would imply an lower bound for the
static 3D-ORC problem with space. Such result would give a
near quadratic improvement over the highest known static cell-probe lower
bound, and break the long standing barrier for static data
structures
The Minrank of Random Graphs
The minrank of a graph is the minimum rank of a matrix that can be
obtained from the adjacency matrix of by switching some ones to zeros
(i.e., deleting edges) and then setting all diagonal entries to one. This
quantity is closely related to the fundamental information-theoretic problems
of (linear) index coding (Bar-Yossef et al., FOCS'06), network coding and
distributed storage, and to Valiant's approach for proving superlinear circuit
lower bounds (Valiant, Boolean Function Complexity '92).
We prove tight bounds on the minrank of random Erd\H{o}s-R\'enyi graphs
for all regimes of . In particular, for any constant ,
we show that with high probability,
where is chosen from . This bound gives a near quadratic
improvement over the previous best lower bound of (Haviv and
Langberg, ISIT'12), and partially settles an open problem raised by Lubetzky
and Stav (FOCS '07). Our lower bound matches the well-known upper bound
obtained by the "clique covering" solution, and settles the linear index coding
problem for random graphs.
Finally, our result suggests a new avenue of attack, via derandomization, on
Valiant's approach for proving superlinear lower bounds for logarithmic-depth
semilinear circuits
Distributed Signaling Games
A recurring theme in recent computer science literature is that proper design
of signaling schemes is a crucial aspect of effective mechanisms aiming to
optimize social welfare or revenue. One of the research endeavors of this line
of work is understanding the algorithmic and computational complexity of
designing efficient signaling schemes. In reality, however, information is
typically not held by a central authority, but is distributed among multiple
sources (third-party "mediators"), a fact that dramatically changes the
strategic and combinatorial nature of the signaling problem, making it a game
between information providers, as opposed to a traditional mechanism design
problem.
In this paper we introduce {\em distributed signaling games}, while using
display advertising as a canonical example for introducing this foundational
framework. A distributed signaling game may be a pure coordination game (i.e.,
a distributed optimization task), or a non-cooperative game. In the context of
pure coordination games, we show a wide gap between the computational
complexity of the centralized and distributed signaling problems. On the other
hand, we show that if the information structure of each mediator is assumed to
be "local", then there is an efficient algorithm that finds a near-optimal
(-approximation) distributed signaling scheme.
In the context of non-cooperative games, the outcome generated by the
mediators' signals may have different value to each (due to the auctioneer's
desire to align the incentives of the mediators with his own by relative
compensations). We design a mechanism for this problem via a novel application
of Shapley's value, and show that it possesses some interesting properties, in
particular, it always admits a pure Nash equilibrium, and it never decreases
the revenue of the auctioneer
Welfare Maximization with Limited Interaction
We continue the study of welfare maximization in unit-demand (matching)
markets, in a distributed information model where agent's valuations are
unknown to the central planner, and therefore communication is required to
determine an efficient allocation. Dobzinski, Nisan and Oren (STOC'14) showed
that if the market size is , then rounds of interaction (with
logarithmic bandwidth) suffice to obtain an -approximation to the
optimal social welfare. In particular, this implies that such markets converge
to a stable state (constant approximation) in time logarithmic in the market
size.
We obtain the first multi-round lower bound for this setup. We show that even
if the allowable per-round bandwidth of each agent is , the
approximation ratio of any -round (randomized) protocol is no better than
, implying an lower bound on the
rate of convergence of the market to equilibrium.
Our construction and technique may be of interest to round-communication
tradeoffs in the more general setting of combinatorial auctions, for which the
only known lower bound is for simultaneous () protocols [DNO14]
Settling the Relationship Between Wilber’s Bounds for Dynamic Optimality
In FOCS 1986, Wilber proposed two combinatorial lower bounds on the operational cost of any binary search tree (BST) for a given access sequence X ∈ [n]^m. Both bounds play a central role in the ongoing pursuit of the dynamic optimality conjecture (Sleator and Tarjan, 1985), but their relationship remained unknown for more than three decades. We show that Wilber’s Funnel bound dominates his Alternation bound for all X, and give a tight Θ(lg lg n) separation for some X, answering Wilber’s conjecture and an open problem of Iacono, Demaine et. al. The main ingredient of the proof is a new symmetric characterization of Wilber’s Funnel bound, which proves that it is invariant under rotations of X. We use this characterization to provide initial indication that the Funnel bound matches the Independent Rectangle bound (Demaine et al., 2009), by proving that when the Funnel bound is constant, IRB_upRect is linear. To the best of our knowledge, our results provide the first progress on Wilber’s conjecture that the Funnel bound is dynamically optimal (1986)
Lower Bounds for Oblivious Near-Neighbor Search
We prove an lower bound on the dynamic
cell-probe complexity of statistically
approximate-near-neighbor search () over the -dimensional
Hamming cube. For the natural setting of , our result
implies an lower bound, which is a quadratic
improvement over the highest (non-oblivious) cell-probe lower bound for
. This is the first super-logarithmic
lower bound for against general (non black-box) data structures.
We also show that any oblivious data structure for
decomposable search problems (like ) can be obliviously dynamized
with overhead in update and query time, strengthening a classic
result of Bentley and Saxe (Algorithmica, 1980).Comment: 28 page