176 research outputs found

    Faithful to the Original: Fact Aware Neural Abstractive Summarization

    Full text link
    Unlike extractive summarization, abstractive summarization has to fuse different parts of the source text, which inclines to create fake facts. Our preliminary study reveals nearly 30% of the outputs from a state-of-the-art neural summarization system suffer from this problem. While previous abstractive summarization approaches usually focus on the improvement of informativeness, we argue that faithfulness is also a vital prerequisite for a practical abstractive summarization system. To avoid generating fake facts in a summary, we leverage open information extraction and dependency parse technologies to extract actual fact descriptions from the source text. The dual-attention sequence-to-sequence framework is then proposed to force the generation conditioned on both the source text and the extracted fact descriptions. Experiments on the Gigaword benchmark dataset demonstrate that our model can greatly reduce fake summaries by 80%. Notably, the fact descriptions also bring significant improvement on informativeness since they often condense the meaning of the source text.Comment: 8 pages, 3 figures, AAAI 201

    LiveBot: Generating Live Video Comments Based on Visual and Textual Contexts

    Full text link
    We introduce the task of automatic live commenting. Live commenting, which is also called `video barrage', is an emerging feature on online video sites that allows real-time comments from viewers to fly across the screen like bullets or roll at the right side of the screen. The live comments are a mixture of opinions for the video and the chit chats with other comments. Automatic live commenting requires AI agents to comprehend the videos and interact with human viewers who also make the comments, so it is a good testbed of an AI agent's ability of dealing with both dynamic vision and language. In this work, we construct a large-scale live comment dataset with 2,361 videos and 895,929 live comments. Then, we introduce two neural models to generate live comments based on the visual and textual contexts, which achieve better performance than previous neural baselines such as the sequence-to-sequence model. Finally, we provide a retrieval-based evaluation protocol for automatic live commenting where the model is asked to sort a set of candidate comments based on the log-likelihood score, and evaluated on metrics such as mean-reciprocal-rank. Putting it all together, we demonstrate the first `LiveBot'
    • …
    corecore