51,648 research outputs found
Mesoscopic Resistance Fluctuations in Cobalt Nanoparticles
We present measurements of mesoscopic resistance fluctuations in cobalt
nanoparticles and study how the fluctuations with bias voltage, bias
fingerprints, respond to magnetization reversal processes. Bias fingerprints
rearrange when domains are nucleated or annihilated. The domain-wall causes an
electron wavefunction phase-shift of . The phase-shift is not
caused by the Aharonov-Bohm effect; we explain how it arises from the
mistracking effect, where electron spins lag in orientation with respect to the
moments inside the domain-wall. Dephasing time in Co at is short,
, which we attribute to the strong magnetocrystalline
anisotropy.Comment: 5 pages 3 figs colou
Morphological evolution of a 3D CME cloud reconstructed from three viewpoints
The propagation properties of coronal mass ejections (CMEs) are crucial to
predict its geomagnetic effect. A newly developed three dimensional (3D) mask
fitting reconstruction method using coronagraph images from three viewpoints
has been described and applied to the CME ejected on August 7, 2010. The CME's
3D localisation, real shape and morphological evolution are presented. Due to
its interaction with the ambient solar wind, the morphology of this CME changed
significantly in the early phase of evolution. Two hours after its initiation,
it was expanding almost self-similarly. CME's 3D localisation is quite helpful
to link remote sensing observations to in situ measurements. The investigated
CME was propagating to Venus with its flank just touching STEREO B. Its
corresponding ICME in the interplanetary space shows a possible signature of a
magnetic cloud with a preceding shock in VEX observations, while from STEREO B
only a shock is observed. We have calculated three principle axes for the
reconstructed 3D CME cloud. The orientation of the major axis is in general
consistent with the orientation of a filament (polarity inversion line)
observed by SDO/AIA and SDO/HMI. The flux rope axis derived by the MVA analysis
from VEX indicates a radial-directed axis orientation. It might be that locally
only the leg of the flux rope passed through VEX. The height and speed profiles
from the Sun to Venus are obtained. We find that the CME speed possibly had
been adjusted to the speed of the ambient solar wind flow after leaving COR2
field of view and before arriving Venus. A southward deflection of the CME from
the source region is found from the trajectory of the CME geometric center. We
attribute it to the influence of the coronal hole where the fast solar wind
emanated from.Comment: ApJ, accepte
Plate actuator vibration modes for levitation
The design of an aluminium or steel plate of various thicknesses for achieving levitation of a small aluminum disk is investigated by simulation using ANSYS. Each plate design is excited by an arrangement of four hard piezoelectric actuators driven with an AC voltage, which produces a centre displacement for generating a squeeze-film in the gap between the vibrating plate and the disk. Physical experiments show levitation conditions for one of the designs
Recommended from our members
Graphene-polyelectrolyte multilayer membranes with tunable structure and internal charge
One great advantage of graphene-polyelectrolyte multilayer (GPM) membranes is their tunable structure and internal charge for improved separation performance. In this study, we synthesized GO-dominant GPM membrane with internal negatively-charged domains, polyethyleneimine (PEI)-dominant GPM membrane with internal positively-charged domains and charge-balanced dense/loose GPM membranes by simply adjusting the ionic strength and pH of the GO and PEI solutions used in layer-by-layer membrane synthesis. A combined system of quartz crystal microbalance with dissipation (QCM-D) and ellipsometry was used to analyze the mass deposition, film thickness, and layer density of the GPM membranes. The performance of the GPM membranes were compared in terms of both permeability and selectivity to determine the optimal membrane structure and synthesis strategy. One effective strategy to improve the GPM membrane permeability-selectivity tradeoff is to assemble charge-balanced dense membranes under weak electrostatic interactions. This balanced membrane exhibits the highest MgCl2 selectivity (∼86%). Another effective strategy for improved cation removal is to create PEI-dominant membranes that provide internal positively-charged barrier to enhance cation selectivity without sacrificing water permeability. These findings shine lights on the development of a systematic approach to push the boundary of permeability-selectivity tradeoff for GPM membranes
Carbon and Nitrogen Pools in Soil Aggregates Were Affected by Grazing Component ---- Results from Dry and Wet Sieving Methods
Grazing intensity can affect soil carbon (C) sequestration in semiarid grassland, but less is known about the effects of grazing component (defoliation, trampling, excreta return and their combinations) on the C and Nitrogen (N) in soil aggregates. In this study, a simulated grazing experiment was established in a typical steppe of Inner Mongolia, and we investigated the impacts of different grazing component treatments on the different size of aggregates distribution and their C and N content from dry and wet physical separations. Different soil C fractions were showed in different sieving method. The C content of different aggregate size showed microaggregates (250-53μm, 7-17%)\u3emacroaggregates (\u3e250μm, 4-12%) \u3efine fraction (\u3c53μm, 0.4-3%) when dry sieving method was performed, but wet sieving resulted in the higher C content in microaggregates (6-14%) and fine fraction (5-11%) than macroaggregates (1-5%). N content of different size of aggregates showed similar trend with C content. The results revealed that grazing component had a marked impact on soil fraction and C and N content with the significant decreasing percentage of macroaggregates and their C and N storage under defoliation. Our result indicated that both dry-sieved aggregates and water-stable aggregates should be concerned to evaluate the short-term grazing disturbance on C and N distribution in soil aggregates. Furthermore, we suggest that trampling is critical for the soil compaction, but defoliation may play a more important role in soil aggregation and C storage in grazing grassland
Pair Distribution Function of One-dimensional "Hard Sphere" Fermi and Bose Systems
The pair distributions of one-dimensional "hard sphere" fermion and boson
systems are exactly evaluated by introducing gap variables.Comment: 4 page
The Unusual Superconducting State at 49 K in Electron-Doped CaFe2As2 at Ambient
We report the detection of unusual superconductivity up to 49 K in single
crystalline CaFe2As2 via electron-doping by partial replacement of Ca by
rare-earth. The superconducting transition observed suggests the possible
existence of two phases: one starting at ~ 49 K, which has a low critical field
~ 4 Oe, and the other at ~ 21 K, with a much higher critical field > 5 T. Our
observations are in strong contrast to previous reports of doping or
pressurizing layered compounds AeFe2As2 (or Ae122), where Ae = Ca, Sr or Ba. In
Ae122, hole-doping has been previously observed to generate superconductivity
with a transition temperature (Tc) only up to 38 K and pressurization has been
reported to produce superconductivity with a Tc up to 30 K. The unusual 49 K
phase detected will be discussed.Comment: 11 pages, 8 figure
- …