6 research outputs found
Detecting high-order interactions of single nucleotide polymorphisms using genetic programming
Motivation: Not individual single nucleotide polymorphisms (SNPs), but high-order interactions of SNPs are assumed to be responsible for complex diseases such as cancer. Therefore, one of the major goals of genetic association studies concerned with such genotype data is the identification of these high-order interactions. This search is additionally impeded by the fact that these interactions often are only explanatory for a relatively small subgroup of patients. Most of the feature selection methods proposed in the literature, unfortunately, fail at this task, since they can either only identify individual variables or interactions of a low order, or try to find rules that are explanatory for a high percentage of the observations. In this paper, we present a procedure based on genetic programming and multi-valued logic that enables the identification of high-order interactions of categorical variables such as SNPs. This method called GPAS (Genetic Programming for Association Studies) cannot only be used for feature selection, but can also be employed for discrimination. Results: In an application to the genotype data from the GENICA study, an association study concerned with sporadic breast cancer, GPAS is able to identify high-order interactions of SNPs leading to a considerably increased breast cancer risk for different subsets of patients that are not found by other feature selection methods. As an application to a subset of the HapMap data shows, GPAS is not restricted to association studies comprising several ten SNPs, but can also be employed to analyze whole-genome data. --
Spin me right round rotational symmetry for FPGA-specific AES
The effort in reducing the area of AES implementations has largely been focused on application-specific integrated circuits (ASICs) in which a tower field construction leads to a small design of the AES S-box. In contrast, a naive implementation of the AES S-box has been the status-quo on field-programmable gate arrays (FPGAs). A similar discrepancy holds for masking schemes—a well-known side-channel analysis countermeasure—which are commonly optimized to achieve minimal area in ASICs. In this paper, we demonstrate a representation of the AES S-box exploiting rotational symmetry which leads to a 50% reduction in the area footprint on FPGA devices. We present new AES implementations which improve on the state-of-the-art and explore various trade-offs between area and latency. For instance, at the cost of increasing 4.5 times the latency, one of our design variants requires 25% less look-up tables (LUTs) than the smallest known AES on Xilinx FPGAs by Sasdrich and Güneysu at ASAP 2016. We further explore the protection of such implementations against side-channel attacks. We introduce a generic methodology for masking any -bit Boolean functions of degree with protection order . The methodology is exact for first-order and heuristic for higher orders. Its application to our new construction of the AES S-box allows us to improve previous results and introduce the smallest first-order masked AES implementation on Xilinx FPGAs, to date
Cellular polyethylene-naphthalate ferroelectrets : foaming in supercritical carbon dioxide, structural and electrical preparation, and resulting piezoelectricity
Polymer foams with electrically charged cellular voids, the so-called ferroelectrets, are soft piezoelectric transducer materials. Several polymers such as polyethylene terephthalate or cyclo-olefin copolymers are under investigation with respect to their suitability as ferroelectrets. Here, the authors report an additional ferroelectret polymer, cellular polyethylene-naphthalate (PEN), which was prepared from commercial uniform polymer films by means of foaming in supercritical carbon dioxide, inflation, biaxial stretching, electrical charging, and metallization. Piezoelectric d(33) coefficients of up to 140 pC/N demonstrate the suitability of such cellular PEN films for transducer applications. Their piezoelectricity is partially stable at elevated temperatures as high as 100 degrees C
Komponenten-Teststands zur Durchführung von
Diese Studienarbeit beschreibt den Entwurf und die Implementierung eines Test-stands für Komponenten, die der Enterprise JavaBean Spezifikation entsprechen, und deren Leistungsmessung. Die Messungen dienen der Gewinnung von Daten, die es später erlauben sollen eine Spezifikation der Dienstgüte, die von der Komponente erbracht werden kann, zu erstellen oder zu verifizieren