756 research outputs found

    Interdecadal variability and oceanic thermohaline adjustment

    Full text link
    Changes in the strength of the thermohaline overturning circulation are associated, by geostrophy, with changes in the east-west pressure difference across an ocean basin. The tropical-polar density contrast and the east-west pressure difference are connected by an adjustment process. In flat-bottomed ocean models the adjustment is associated with viscous, baroclinic Kelvin wave propagation. Weak-high latitude stratification leads to the adjustment having an interdecadal timescale. We reexamine model interdecadal oscillations in the context of the adjustment process, for both constant flux and mixed surface boundary conditions. Under constant surface flux, interdecadal oscillations are associated with the passage of a viscous Kelvin wave around the model domain. Our results suggest the oscillations can be self-sustained by perturbations to the western boundary current arising from the southward boundary wave propagation. Mixed boundary condition oscillations are characterized by the eastward, cross-basin movement of salinity-dominated density anomalies, and the westward return of these anomalies along the northern boundary. We suggest the latter is associated with viscous Kelvin wave propagation. Under both types of boundary conditions, the strength of the thermohaline overturning and the tropical-polar density contrast vary out of phase. We show how the phase relationship is related to the boundary wave propagation. The importance of boundary regions indicates an urgent need to examine the robustness of interdecadal variability in models as the resolution is increased, and as the representation of the coastal, shelf/slope wave guide is improved. (Abriged abstract)Comment: 20 pages, AGU LaTeX, 12 figures included using epsfig, to appear in JGR, complete manuscript also available at ftp://crosby.physics.mun.ca/pub/drew/papers/gp1.ps.g

    A defense of QUD reasons contextualism

    Get PDF
    In this article, we defend the semantic theory, Question Under Discussion (QUD) Contextualism about Reasons that we develop in our monograph Semantics for Reasons against a series of objections that focus on whether our semantics can deliver predictions for some common examples, how we defend the semantic theory, and how we assess it compared to its competitors.</p

    Hypothesis Generation Using Network Structures on Community Health Center Cancer-Screening Performance

    Get PDF
    RESEARCH OBJECTIVES: Nationally sponsored cancer-care quality-improvement efforts have been deployed in community health centers to increase breast, cervical, and colorectal cancer-screening rates among vulnerable populations. Despite several immediate and short-term gains, screening rates remain below national benchmark objectives. Overall improvement has been both difficult to sustain over time in some organizational settings and/or challenging to diffuse to other settings as repeatable best practices. Reasons for this include facility-level changes, which typically occur in dynamic organizational environments that are complex, adaptive, and unpredictable. This study seeks to understand the factors that shape community health center facility-level cancer-screening performance over time. This study applies a computational-modeling approach, combining principles of health-services research, health informatics, network theory, and systems science. METHODS: To investigate the roles of knowledge acquisition, retention, and sharing within the setting of the community health center and to examine their effects on the relationship between clinical decision support capabilities and improvement in cancer-screening rate improvement, we employed Construct-TM to create simulated community health centers using previously collected point-in-time survey data. Construct-TM is a multi-agent model of network evolution. Because social, knowledge, and belief networks co-evolve, groups and organizations are treated as complex systems to capture the variability of human and organizational factors. In Construct-TM, individuals and groups interact by communicating, learning, and making decisions in a continuous cycle. Data from the survey was used to differentiate high-performing simulated community health centers from low-performing ones based on computer-based decision support usage and self-reported cancer-screening improvement. RESULTS: This virtual experiment revealed that patterns of overall network symmetry, agent cohesion, and connectedness varied by community health center performance level. Visual assessment of both the agent-to-agent knowledge sharing network and agent-to-resource knowledge use network diagrams demonstrated that community health centers labeled as high performers typically showed higher levels of collaboration and cohesiveness among agent classes, faster knowledge-absorption rates, and fewer agents that were unconnected to key knowledge resources. Conclusions and research implications: Using the point-in-time survey data outlining community health center cancer-screening practices, our computational model successfully distinguished between high and low performers. Results indicated that high-performance environments displayed distinctive network characteristics in patterns of interaction among agents, as well as in the access and utilization of key knowledge resources. Our study demonstrated how non-network-specific data obtained from a point-in-time survey can be employed to forecast community health center performance over time, thereby enhancing the sustainability of long-term strategic-improvement efforts. Our results revealed a strategic profile for community health center cancer-screening improvement via simulation over a projected 10-year period. The use of computational modeling allows additional inferential knowledge to be drawn from existing data when examining organizational performance in increasingly complex environments

    Using computational modeling to assess the impact of clinical decision support on cancer screening improvement strategies within the community health centers

    Get PDF
    AbstractOur conceptual model demonstrates our goal to investigate the impact of clinical decision support (CDS) utilization on cancer screening improvement strategies in the community health care (CHC) setting. We employed a dual modeling technique using both statistical and computational modeling to evaluate impact. Our statistical model used the Spearman’s Rho test to evaluate the strength of relationship between our proximal outcome measures (CDS utilization) against our distal outcome measure (provider self-reported cancer screening improvement). Our computational model relied on network evolution theory and made use of a tool called Construct-TM to model the use of CDS measured by the rate of organizational learning. We employed the use of previously collected survey data from community health centers Cancer Health Disparities Collaborative (HDCC). Our intent is to demonstrate the added valued gained by using a computational modeling tool in conjunction with a statistical analysis when evaluating the impact a health information technology, in the form of CDS, on health care quality process outcomes such as facility-level screening improvement. Significant simulated disparities in organizational learning over time were observed between community health centers beginning the simulation with high and low clinical decision support capability

    Development of an Evidence-Based Teaching Plan for a Simulation Program on Mock Codes for Interdisciplinary Teams in Acute Care Facilities

    Get PDF
    Over 200,000 cardiopulmonary arrests occur annually in medical centers. These events, frequently referred to as “Code Blue” medical emergencies, are responsible for significant morbidity and mortality in the hospital setting. Code Blue events require healthcare providers to respond swiftly and effectively in an attempt to improve outcomes and reduce patient safety threats, providers must be fully prepared to respond to Code Blue hospital events. To facilitate this preparation, an evidence-based mock-code teaching plan through structured simulation sessions was developed for hospital-wide distribution

    Dual effects of implicit bystanders: Inhibiting vs. facilitating helping behavior

    Full text link
    Encouraging consumers to engage in helpful behavior is a perennial task of marketers in non‐profit and for‐profit organizations. Recent research suggests that merely imagining the presence of others can lead to less helping behavior on a subsequent unrelated task (Garcia, S.M., Weaver, K.D., Moskowitz, G.B., and Darley, J.M. (2002). Crowded minds: The implicit bystander effect. Journal of Personality and Social Psychology, 83, 843–853.). The present analysis uncovers the boundary conditions of this effect. Across four studies, we establish that the degree to which a group situation fosters public scrutiny is an important moderator. When group primes are paired with public scrutiny, their inhibitive effect on helping behavior diminishes, and helping behavior on a subsequent task tends to increase. The present research thus adds complexity to previous findings by suggesting that implicit bystanders can both decrease and increase helping behavior.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142246/1/jcpy215.pd

    Comparison of two maxillary protraction protocols: tooth-borne versus bone-anchored protraction facemask treatment

    Get PDF
    Background Protraction facemask has been advocated for treatment of class III malocclusion with maxillary deficiency. Studies using tooth-borne rapid palatal expansion (RPE) appliance as anchorage have experienced side effects such as forward movement of the maxillary molars, excessive proclination of the maxillary incisors, and an increase in lower face height. A new Hybrid Hyrax bone-anchored RPE appliance claimed to minimize the side effects of maxillary expansion and protraction. A retrospective study was conducted to compare the skeletal and dentoalveolar changes in patients treated with these two protocols. Methods Twenty class III patients (8 males, 12 females, mean age 9.8 ± 1.6 years) who were treated consecutively with the tooth-borne maxillary RPE and protraction device were compared with 20 class III patients (8 males, 12 females, mean age 9.6 ± 1.2 years) who were treated consecutively with the bone-anchored maxillary RPE and protraction appliances. Lateral cephalograms were taken at the start of treatment and at the end of maxillary protraction. A control group of class III patients with no treatment was included to subtract changes due to growth to obtain the true appliance effect. A custom cephalometric analysis based on measurements described by Bjork and Pancherz, McNamara, Tweed, and Steiner analyses was used to determine skeletal and dental changes. Data were analyzed using a one-way analysis of variance. Results Significant differences between the two groups were found in 8 out of 29 cephalometric variables (p \u3c .05). Subjects in the tooth-borne facemask group had more proclination of maxillary incisors (OLp-Is, Is-SNL), increase in overjet correction, and correction in molar relationship. Subjects in the bone-anchored facemask group had less downward movement of the “A” point, less opening of the mandibular plane (SNL-ML and FH-ML), and more vertical eruption of the maxillary incisors. Conclusions The Hybrid Hyrax bone-anchored RPE appliance minimized the side effect encounter by tooth-borne RPE appliance for maxillary expansion and protraction and may serve as an alternative treatment appliance for correcting class III patients with a hyperdivergent growth pattern

    A novel determination of the local dark matter density

    Full text link
    We present a novel study on the problem of constructing mass models for the Milky Way, concentrating on features regarding the dark matter halo component. We have considered a variegated sample of dynamical observables for the Galaxy, including several results which have appeared recently, and studied a 7- or 8-dimensional parameter space - defining the Galaxy model - by implementing a Bayesian approach to the parameter estimation based on a Markov Chain Monte Carlo method. The main result of this analysis is a novel determination of the local dark matter halo density which, assuming spherical symmetry and either an Einasto or an NFW density profile is found to be around 0.39 GeV cm3^{-3} with a 1-σ\sigma error bar of about 7%; more precisely we find a ρDM(R0)=0.385±0.027GeVcm3\rho_{DM}(R_0) = 0.385 \pm 0.027 \rm GeV cm^{-3} for the Einasto profile and ρDM(R0)=0.389±0.025GeVcm3\rho_{DM}(R_0) = 0.389 \pm 0.025 \rm GeV cm^{-3} for the NFW. This is in contrast to the standard assumption that ρDM(R0)\rho_{DM}(R_0) is about 0.3 GeV cm3^{-3} with an uncertainty of a factor of 2 to 3. A very precise determination of the local halo density is very important for interpreting direct dark matter detection experiments. Indeed the results we produced, together with the recent accurate determination of the local circular velocity, should be very useful to considerably narrow astrophysical uncertainties on direct dark matter detection.Comment: 31 pages,11 figures; minor changes in the text; two figures adde

    Destabilization of the thermohaline circulation by transient perturbations to the hydrological cycle

    Full text link
    We reconsider the problem of the stability of the thermohaline circulation as described by a two-dimensional Boussinesq model with mixed boundary conditions. We determine how the stability properties of the system depend on the intensity of the hydrological cycle. We define a two-dimensional parameters' space descriptive of the hydrology of the system and determine, by considering suitable quasi-static perturbations, a bounded region where multiple equilibria of the system are realized. We then focus on how the response of the system to finite-amplitude surface freshwater forcings depends on their rate of increase. We show that it is possible to define a robust separation between slow and fast regimes of forcing. Such separation is obtained by singling out an estimate of the critical growth rate for the anomalous forcing, which can be related to the characteristic advective time scale of the system.Comment: 37 pages, 8 figures, submitted to Clim. Dy

    Response of a climate model to tidal mixing parameterization under present day and last glacial maximum conditions

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Ocean Modelling 19 (2007): 125-137, doi:10.1016/j.ocemod.2007.06.009.Experiments with a climate model were conducted under present day and last glacial maximum conditions in order to examine the model’s response to a vertical mixing scheme based on internal tide energy dissipation. The increase in internal tide energy flux caused by a 120 m reduction in sea level had the expected effect on diffusivity values, which were higher under lower sea level conditions. The impact of this vertical diffusivity change on the Atlantic meridional overturning is not straightforward and no clear relationship between diffusivity and overturning is found. There exists a weak positive correlation between overturning and changes to the power consumed by vertical mixing. Most of the climatic response generated by sea level change was not related to alterations in the internal tide energy flux but rather to the direct change in sea level itself.Funding received from CFCAS through the CLIVAR and Polar Climate Stability Research networks. SRJ was supported by the U.S. National Science Foundation under Grant No. OCE-0241061
    corecore