786 research outputs found

    The importance of estuarine head waters for fishes in selected Eastern Cape systems, with particular emphasis on the influence of freshwater inflow, migration barriers and non-native predators on the juvenile and small fish component

    Get PDF
    The utilisation of estuary headwater environments by young estuary- and marine-spawned fish species was investigated together with the effects of riverflow alteration, in-stream barrier effects and non-native ichthyofauna on the nursery function of these habitats. The distribution and abundance of young estuary- and marine-spawned fish were sampled using seine and fyke nets in the headwater environments of four permanently open Eastern Cape systems, namely the Great Fish, Kowie, Kariega and Sundays Estuaries. Within the suite of study systems, the first of two case studies focussed on barrier effects of in-stream structures on fish migration. This was undertaken in the Sundays River. In the second case study, predation and competition dynamics of the non-native piscivorous Micropterus salmoides on estuary-dependent fish was investigated in the estuary headwater regions of the Kowie River system. In all four estuaries, young estuary-spawned fish species dominated the ichthyofaunal community followed by marine-spawned species, despite varied freshwater inflow resulting in headwaters varying in salinity from fresh to hypersaline. Fish community structure however, differed largely between estuaries, with both freshwater abstraction and unnatural elevation of freshwater into estuaries, as a result of inter-basin transfers, affecting these communities. In-stream structures were found to effect upstream movement of fish in two ways, dependent on the type of barrier. Partial (size-dependent) and complete (species-dependent) restriction to upstream migration of fish by causeway-type instream structures were observed. Weir-type in-stream structures acted as a complete barrier to most species, regardless of fish size. Predation of estuary- and marine-spawned fish species by large sized M. salmoides was recorded, although these fish did not contribute significantly to their diet during this study. However, the main dietary components found in smaller sized M. salmoides stomachs overlap with those of juvenile estuary- and marinespawned fish species, suggesting feeding competition between the juveniles of indigenous and non-native fish species

    Direct and indirect effects of zooplanktivorous predators on the estuarine plankton community

    Get PDF
    Although predation has been identified as a potentially important driver in terrestrial and freshwater ecosystems, estuarine planktonic research has focused largely on the so-called "bottom-up" drivers of community assemblages. As such, this thesis focuses on the direct and indirect effects of zooplanktivorous predators on the planktonic community in an estuarine environment. By using a suite of in situ mesocosm experiments, a number of hypotheses, pertaining to the major research themes associated with predator-prey interactions, are tested. These themes included trophic cascading, risk effects associated with predation events and the importance of predator diversity in maintaining prey communities. The first experiment assessed the significance of apex predation pressure for the planktonic community through trophic cascades. Various treatments using in situ mesocosms were established in a closed oligotrophic estuary to highlight the importance of predation in stabilising estuarine plankton abundances. Through either the removal (filtration) or addition of certain planktonic groups, varied trophic scenarios were established. The experimental treatment containing apex zooplanktivores had consequences for multiple trophic levels, exerting a stabilising pressure throughout the food web (Chapter 3). Furthermore, pyrosequencing of filtered water samples revealed that when compared to the remaining treatments, the treatment containing stable apex predatory pressure experienced limited temporal deviation-from-initial in bacterial community structure (Chapter 4). These findings are consistent with trophic cascade theory whereby predators mediate interactions at multiple lower trophic levels with consequent repercussions for diversity. To assess the non-consumptive effects of predators on prey, two experiments were conducted. Firstly, using egg numbers per clutch as a measure of potential reproductive output, the non-lethal effects of predatory pressure on reproductive success in a key planktonic copepod was investigated. In this study, the average clutch size of fecund female copepods was found to be consistently lower in the presence of predators when compared to females not exposed to predation threat (Chapter 5). The second study assessed the effects of conspecific chemical alarm cues associated with predation, on population dynamics of a copepod species. This study revealed that the copepods appear to detect the presence of chemical alarm cues associated with predation events, with repercussions for population demographics over time. Furthermore, it showed that in the absence of actual predation, copepod prey responses to alarm cues were adjusted over time, consistent with the threat sensitive predator avoidance hypothesis (Chapter 6). The final data chapter dealt with predator diversity and its implications for zooplankton community structure. By experimentally monitoring the effects of two alternate model predators on the metazoan community over time, dissimilarities in community level control emerged. Alternate key prey populations were regulated by the different model predators, highlighting the importance of predator and prey behaviour in mediating predator-prey interactions (Chapter 7). These results highlight the potential importance of predators in maintaining community dynamics in estuarine planktonic communities under certain conditions. This study represents some of the first work to address these various aspects of predator-prey dynamics within the context of planktonic estuarine ecology

    The Paradox of the Question

    Get PDF
    What is the best question to ask an omniscient being? The question is intriguing; is it also paradoxical? We discuss several versions of what Ned Markosian calls the paradox of the question and suggest solutions to each of those puzzles. We then offer some practical advice about what do if you ever have the opportunity to query an omniscient being

    Colour and size influences plastic microbead underestimation, regardless of sediment grain size

    Get PDF
    The quantification of microplastics in environmental samples often requires an observer to determine whether a particle is plastic or non-plastic, prior to further verification procedures. This implies that inconspicuous microplastics with a low natural detection may be underestimated. The present study aimed at assessing this underestimation, looking at how colour (white, green and blue), size (large; ~1000 μm and small; &lt;400 μm) and grain size fraction may affect detection. Sediment treatments varying in grain size were inoculated with known quantities of low-density polyethylene microbeads extracted from commercially bought facial scrubs. These microbeads varied in colour and size. Once extracted using a density separation method microbeads were counted. An overall underestimation of 78.59% may be a result of observer error and/or technical error. More specifically, the results suggested that microbeads varying in colour and size have a different detection probability and that these microbead features are more important in underestimation likelihoods than grain sizes.</p
    corecore