786 research outputs found
The importance of estuarine head waters for fishes in selected Eastern Cape systems, with particular emphasis on the influence of freshwater inflow, migration barriers and non-native predators on the juvenile and small fish component
The utilisation of estuary headwater environments by young estuary- and marine-spawned fish species was investigated together with the effects of riverflow alteration, in-stream barrier effects and non-native ichthyofauna on the nursery function of these habitats. The distribution and abundance of young estuary- and marine-spawned fish were sampled using seine and fyke nets in the headwater environments of four permanently open Eastern Cape systems, namely the Great Fish, Kowie, Kariega and Sundays Estuaries. Within the suite of study systems, the first of two case studies focussed on barrier effects of in-stream structures on fish migration. This was undertaken in the Sundays River. In the second case study, predation and competition dynamics of the non-native piscivorous Micropterus salmoides on estuary-dependent fish was investigated in the estuary headwater regions of the Kowie River system. In all four estuaries, young estuary-spawned fish species dominated the ichthyofaunal community followed by marine-spawned species, despite varied freshwater inflow resulting in headwaters varying in salinity from fresh to hypersaline. Fish community structure however, differed largely between estuaries, with both freshwater abstraction and unnatural elevation of freshwater into estuaries, as a result of inter-basin transfers, affecting these communities. In-stream structures were found to effect upstream movement of fish in two ways, dependent on the type of barrier. Partial (size-dependent) and complete (species-dependent) restriction to upstream migration of fish by causeway-type instream structures were observed. Weir-type in-stream structures acted as a complete barrier to most species, regardless of fish size. Predation of estuary- and marine-spawned fish species by large sized M. salmoides was recorded, although these fish did not contribute significantly to their diet during this study. However, the main dietary components found in smaller sized M. salmoides stomachs overlap with those of juvenile estuary- and marinespawned fish species, suggesting feeding competition between the juveniles of indigenous and non-native fish species
Recommended from our members
Calanoid copepods: an overlooked tool in the control of disease vector mosquitoes
Biological control can assist in the management of disease vector mosquitoes. However, we urgently require the identification of novel and effective agents to aid population management strategies. Quantifying interactions strengths between consumers and resources is central to our understanding of trophic stability, and is relevant within the biological control context. Previously, pPredatory biocontrol of disease vector mosquito species has previously focused extensively on cyclopoid copepods, but prey size refuge effects have been identified as a hindrance to their predatory efficacy. Calanoid copepods have yet to be comprehensively examined in the context of mosquito control, despite their high prevalence, diversity and distribution. Here, we apply functional responses (FRs; resource use as a function of resource density) to examine interaction strengthspredation efficiencies of a recently described ephemeral pond specialist species, the freshwater calanoid copepod Lovenula raynerae Suárez-Morales, Wasserman & Dalu 2015, using different size classes of larvae of the disease vector complex Culex pipiens as prey. Lovenula raynerae effectively consumed C. pipiens larvae across their ontogeny. A potentially population destabilising Type II FR was exhibited towards both early and late instar mosquitoes, indicative of a lack of prey refuge across ontogenetic stages. Attack rates were greatest and handling times lowest for early instar larvae compared to late instar larvae. These traits contrast to other copepods, commonly applied in biocontrol, which are only able to handle early instars, and in much smaller numbers. We thus advocate that calanoid copepods can exert particularly marked predatory impact on lower trophic groups, and that their use in disease vector mosquito control strategies should be further explored
Direct and indirect effects of zooplanktivorous predators on the estuarine plankton community
Although predation has been identified as a potentially important driver in terrestrial and freshwater ecosystems, estuarine planktonic research has focused largely on the so-called "bottom-up" drivers of community assemblages. As such, this thesis focuses on the direct and indirect effects of zooplanktivorous predators on the planktonic community in an estuarine environment. By using a suite of in situ mesocosm experiments, a number of hypotheses, pertaining to the major research themes associated with predator-prey interactions, are tested. These themes included trophic cascading, risk effects associated with predation events and the importance of predator diversity in maintaining prey communities. The first experiment assessed the significance of apex predation pressure for the planktonic community through trophic cascades. Various treatments using in situ mesocosms were established in a closed oligotrophic estuary to highlight the importance of predation in stabilising estuarine plankton abundances. Through either the removal (filtration) or addition of certain planktonic groups, varied trophic scenarios were established. The experimental treatment containing apex zooplanktivores had consequences for multiple trophic levels, exerting a stabilising pressure throughout the food web (Chapter 3). Furthermore, pyrosequencing of filtered water samples revealed that when compared to the remaining treatments, the treatment containing stable apex predatory pressure experienced limited temporal deviation-from-initial in bacterial community structure (Chapter 4). These findings are consistent with trophic cascade theory whereby predators mediate interactions at multiple lower trophic levels with consequent repercussions for diversity. To assess the non-consumptive effects of predators on prey, two experiments were conducted. Firstly, using egg numbers per clutch as a measure of potential reproductive output, the non-lethal effects of predatory pressure on reproductive success in a key planktonic copepod was investigated. In this study, the average clutch size of fecund female copepods was found to be consistently lower in the presence of predators when compared to females not exposed to predation threat (Chapter 5). The second study assessed the effects of conspecific chemical alarm cues associated with predation, on population dynamics of a copepod species. This study revealed that the copepods appear to detect the presence of chemical alarm cues associated with predation events, with repercussions for population demographics over time. Furthermore, it showed that in the absence of actual predation, copepod prey responses to alarm cues were adjusted over time, consistent with the threat sensitive predator avoidance hypothesis (Chapter 6). The final data chapter dealt with predator diversity and its implications for zooplankton community structure. By experimentally monitoring the effects of two alternate model predators on the metazoan community over time, dissimilarities in community level control emerged. Alternate key prey populations were regulated by the different model predators, highlighting the importance of predator and prey behaviour in mediating predator-prey interactions (Chapter 7). These results highlight the potential importance of predators in maintaining community dynamics in estuarine planktonic communities under certain conditions. This study represents some of the first work to address these various aspects of predator-prey dynamics within the context of planktonic estuarine ecology
The Paradox of the Question
What is the best question to ask an omniscient being? The question is intriguing; is it also paradoxical? We discuss several versions of what Ned Markosian calls the paradox of the question and suggest solutions to each of those puzzles. We then offer some practical advice about what do if you ever have the opportunity to query an omniscient being
Recommended from our members
Combined impacts of warming and salinisation on trophic interactions and mortality of a specialist ephemeral wetland predator
Wetlands are of enormous importance for biodiversity globally but are under increasing risk from multiple stressors driven by ongoing anthropogenic environmental change. As the trophic structure and dynamics of ephemeral wetlands are poorly understood, it is difficult to predict how these biodiverse ecosystems will be impacted by global change. In particular, warming and salinisation are projected to have profound impacts on these wetlands in future.
The present study examined the combined effects of warming and salinisation on species interaction strengths and mortality rates for two ephemeral wetland species. Using an ephemeral pond specialist copepod, Lovenula raynerae Suárez‐Morales, Wasserman, & Dalu, (2015) as a model predator species, we applied a functional response approach to derive warming and salinisation effects on trophic interactions with a prey species. Furthermore, the effects of a salinisation gradient on mortality rates of adult copepods were quantified.
The predatory copepod exhibited type II functional responses towards larval Culex pipiens mosquito prey, owing to high predation rates at low prey densities. Increased temperatures generally resulted in greater predator feeding rates, whilst increased salinities reduced consumption. However, the effects of temperature and salinity interacted: temperature effects on functional responses were suppressed under heightened salinities. Substantial mortality was observed in both male and female adult L. raynerae at salinity levels exceeding 10 parts per thousand.
Warming and salinisation substantially altered interaction strengths in ephemeral wetland ecosystems, with implications for ecosystem function and stability. Furthermore, we demonstrated salinisation thresholds for mortality in an ephemeral wetland specialist, showing that salinisation may threaten the persistence of endemic species. The ongoing effects of warming and salinisation may therefore interact to alter trophic dynamics and species composition in ephemeral wetlands. These stressors should be considered synergistically within management practices
Recommended from our members
Muddy waters: efficacious predation of container-breeding mosquitoes by a newly-described calanoid copepod across differential water clarities
Mosquito-borne diseases induce unrivalled morbidity and mortality in human populations. In recent times, greater urbanisation has facilitated vector population expansion, particularly of those which proliferate in container-style habitats. To combat increased associated disease risk, we urgently require innovative and efficacious control mechanisms to be identified and implemented. Predatory biological control of vectorially-important mosquitoes can be effective. Despite their high prevalence in freshwater ecosystems, predatory calanoid copepods have yet to be examined comprehensively for mosquito control. Moreover, environmental context-dependencies can cause substantial variations in natural enemy impacts on target populations. Accordingly, improved understanding of the effects of context-dependencies upon predatory biocontrol is needed. Here, we use functional responses (FRs) to examine the predatory impact of a newly-described species of calanoid copepod, Lovenula raynerae, upon larval Culex pipiens prey across variations in prey supply and water clarity. Using outdoor field trials, we assess the viability of L. raynerae in reducing mosquito survival in container-style habitats. Lovenula raynerae displayed destabilising Type II FRs towards larval mosquito prey across all water clarities tested, with overall predation rates remaining largely unaffected across all clarity treatments. In the outdoor experiment, L. raynerae applications resulted in substantial reductions in larval C. pipiens populations, with close to total eradication achieved following the experimental period under higher predator densities. These results demonstrate that environmental context such as water clarity may have little effect on vector control by calanoid copepods, which suggests a predatory reliance on hydromechanical signalling. Further, for the first time, we demonstrate the applicability of calanoid copepods to artificial container-style habitats where mosquitoes proliferate. Therefore, our results indicate that further examination into the applicability of this species group to aid vector biocontrol strategies is warranted
Colour and size influences plastic microbead underestimation, regardless of sediment grain size
The quantification of microplastics in environmental samples often requires an observer to determine whether a particle is plastic or non-plastic, prior to further verification procedures. This implies that inconspicuous microplastics with a low natural detection may be underestimated. The present study aimed at assessing this underestimation, looking at how colour (white, green and blue), size (large; ~1000 μm and small; <400 μm) and grain size fraction may affect detection. Sediment treatments varying in grain size were inoculated with known quantities of low-density polyethylene microbeads extracted from commercially bought facial scrubs. These microbeads varied in colour and size. Once extracted using a density separation method microbeads were counted. An overall underestimation of 78.59% may be a result of observer error and/or technical error. More specifically, the results suggested that microbeads varying in colour and size have a different detection probability and that these microbead features are more important in underestimation likelihoods than grain sizes.</p
- …