6 research outputs found

    Newtype single-layer magnetic semiconductor in transition-metal dichalcogenides VX 2 (X = S, Se and Te)

    Get PDF
    We present a newtype 2-dimensional (2D) magnetic semiconductor based on transition-metal dichalcogenides VX2 (X = S, Se and Te) via first-principles calculations. The obtained indirect band gaps of monolayer VS2, VSe2, and VTe2 given from the generalized gradient approximation (GGA) are respectively 0.05, 0.22, and 0.20 eV, all with integer magnetic moments of 1.0 μB. The GGA plus on-site Coulomb interaction U (GGA + U) enhances the exchange splittings and raises the energy gap up to 0.38~0.65 eV. By adopting the GW approximation, we obtain converged G0W0 gaps of 1.3, 1.2, and 0.7 eV for VS2, VSe2, and VTe2 monolayers, respectively. They agree very well with our calculated HSE gaps of 1.1, 1.2, and 0.6 eV, respectively. The gap sizes as well as the metal-insulator transitions are tunable by applying the in-plane strain and/or changing the number of stacking layers. The Monte Carlo simulations illustrate very high Curie-temperatures of 292, 472, and 553 K for VS2, VSe2, and VTe2 monolayers, respectively. They are nearly or well beyond the room temperature. Combining the semiconducting energy gap, the 100% spin polarized valence and conduction bands, the room temperature TC, and the in-plane magnetic anisotropy together in a single layer VX2, this newtype 2D magnetic semiconductor shows great potential in future spintronics

    Substrate induced modulation of electronic, magnetic and chemical properties of MoSe2 monolayer

    No full text
    Monolayer of MoSe2, having a typical direct band gap of ∼1.5 eV, is a promising material for optoelectronic and solar cell applications. When this 2D semiconductor is supported on transition metal substrates, such as Ni(111) and Cu(111), its electronic structure gets modulated. First principles density functional investigation shows the appearance of de-localized mid-gap states in the density of states. The work function of the semiconductor overlayer gets modified considerably, indicating n-type doping caused by the metal contacts. The charge transfer across the metal-semiconductor junction also significantly enhances the chemical reactivity of the MoSe2 overlayer, as observed by Hydrogen absorption. Furthermore, for Ni contact, there is a signature of induced magnetism in MoSe2 monolayer