210 research outputs found

    Likelihood-based inference, identifiability and prediction using count data from lattice-based random walk models

    Full text link
    In vitro cell biology experiments are routinely used to characterize cell migration properties under various experimental conditions. These experiments can be interpreted using lattice-based random walk models to provide insight into underlying biological mechanisms, and continuum limit partial differential equation (PDE) descriptions of the stochastic models can be used to efficiently explore model properties instead of relying on repeated stochastic simulations. Working with efficient PDE models is of high interest for parameter estimation algorithms that typically require a large number of forward model simulations. Quantitative data from cell biology experiments usually involves non-negative cell counts in different regions of the experimental images, and it is not obvious how to relate finite, noisy count data to the solutions of continuous PDE models that correspond to noise-free density profiles. In this work we illustrate how to develop and implement likelihood-based methods for parameter estimation, parameter identifiability and model prediction for lattice-based models describing collective migration with an arbitrary number of interacting subpopulations. We implement a standard additive Gaussian measurement error model as well as a new physically-motivated multinomial measurement error model that relates noisy count data with the solution of continuous PDE models. Both measurement error models lead to similar outcomes for parameter estimation and parameter identifiability, whereas the standard additive Gaussian measurement error model leads to non-physical prediction outcomes. In contrast, the new multinomial measurement error model involves a lower computational overhead for parameter estimation and identifiability analysis, as well as leading to physically meaningful model predictions.Comment: 34 pages, 7 figure

    Bayesian score calibration for approximate models

    Full text link
    Scientists continue to develop increasingly complex mechanistic models to reflect their knowledge more realistically. Statistical inference using these models can be challenging since the corresponding likelihood function is often intractable and model simulation may be computationally burdensome. Fortunately, in many of these situations, it is possible to adopt a surrogate model or approximate likelihood function. It may be convenient to conduct Bayesian inference directly with the surrogate, but this can result in bias and poor uncertainty quantification. In this paper we propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification. We do this by optimizing a transform of the approximate posterior that maximizes a scoring rule. Our approach requires only a (fixed) small number of complex model simulations and is numerically stable. We demonstrate good performance of the new method on several examples of increasing complexity.Comment: 27 pages, 8 figures, 5 table

    Rapid Bayesian inference for expensive stochastic models

    Full text link
    Almost all fields of science rely upon statistical inference to estimate unknown parameters in theoretical and computational models. While the performance of modern computer hardware continues to grow, the computational requirements for the simulation of models are growing even faster. This is largely due to the increase in model complexity, often including stochastic dynamics, that is necessary to describe and characterize phenomena observed using modern, high resolution, experimental techniques. Such models are rarely analytically tractable, meaning that extremely large numbers of stochastic simulations are required for parameter inference. In such cases, parameter inference can be practically impossible. In this work, we present new computational Bayesian techniques that accelerate inference for expensive stochastic models by using computationally inexpensive approximations to inform feasible regions in parameter space, and through learning transforms that adjust the biased approximate inferences to closer represent the correct inferences under the expensive stochastic model. Using topical examples from ecology and cell biology, we demonstrate a speed improvement of an order of magnitude without any loss in accuracy. This represents a substantial improvement over current state-of-the-art methods for Bayesian computations when appropriate model approximations are available

    Misspecification-robust Sequential Neural Likelihood for Simulation-based Inference

    Full text link
    Simulation-based inference techniques are indispensable for parameter estimation of mechanistic and simulable models with intractable likelihoods. While traditional statistical approaches like approximate Bayesian computation and Bayesian synthetic likelihood have been studied under well-specified and misspecified settings, they often suffer from inefficiencies due to wasted model simulations. Neural approaches, such as sequential neural likelihood (SNL) avoid this wastage by utilising all model simulations to train a neural surrogate for the likelihood function. However, the performance of SNL under model misspecification is unreliable and can result in overconfident posteriors centred around an inaccurate parameter estimate. In this paper, we propose a novel SNL method, which through the incorporation of additional adjustment parameters, is robust to model misspecification and capable of identifying features of the data that the model is not able to recover. We demonstrate the efficacy of our approach through several illustrative examples, where our method gives more accurate point estimates and uncertainty quantification than SNL

    Preconditioned Neural Posterior Estimation for Likelihood-free Inference

    Full text link
    Simulation based inference (SBI) methods enable the estimation of posterior distributions when the likelihood function is intractable, but where model simulation is feasible. Popular neural approaches to SBI are the neural posterior estimator (NPE) and its sequential version (SNPE). These methods can outperform statistical SBI approaches such as approximate Bayesian computation (ABC), particularly for relatively small numbers of model simulations. However, we show in this paper that the NPE methods are not guaranteed to be highly accurate, even on problems with low dimension. In such settings the posterior cannot be accurately trained over the prior predictive space, and even the sequential extension remains sub-optimal. To overcome this, we propose preconditioned NPE (PNPE) and its sequential version (PSNPE), which uses a short run of ABC to effectively eliminate regions of parameter space that produce large discrepancy between simulations and data and allow the posterior emulator to be more accurately trained. We present comprehensive empirical evidence that this melding of neural and statistical SBI methods improves performance over a range of examples, including a motivating example involving a complex agent-based model applied to real tumour growth data.Comment: 31 pages, 11 figure

    Generalised likelihood profiles for models with intractable likelihoods

    Full text link
    Likelihood profiling is an efficient and powerful frequentist approach for parameter estimation, uncertainty quantification and practical identifiablity analysis. Unfortunately, these methods cannot be easily applied for stochastic models without a tractable likelihood function. Such models are typical in many fields of science, rendering these classical approaches impractical in these settings. To address this limitation, we develop a new approach to generalising the methods of likelihood profiling for situations when the likelihood cannot be evaluated but stochastic simulations of the assumed data generating process are possible. Our approach is based upon recasting developments from generalised Bayesian inference into a frequentist setting. We derive a method for constructing generalised likelihood profiles and calibrating these profiles to achieve desired frequentist coverage for a given coverage level. We demonstrate the performance of our method on realistic examples from the literature and highlight the capability of our approach for the purpose of practical identifability analysis for models with intractable likelihoods

    Cell cycle-dependent activation of Ras

    Get PDF
    AbstractBackground Ras proteins play an essential role in the transduction of signals from a wide range of cell-surface receptors to the nucleus. These signals may promote cellular proliferation or differentiation, depending on the cell background. It is well established that Ras plays an important role in the transduction of mitogenic signals from activated growth-factor receptors, leading to cell-cycle entry. However, important questions remain as to whether Ras controls signalling events during cell-cycle progression and, if so, at which point in the cell-cycle it is activated.Results To address these questions we have developed a novel, functional assay for the detection of cellular activated Ras. Using this assay, we found that Ras was activated in HeLa cells, following release from mitosis, and in NIH 3T3 fibroblasts, following serum-stimulated cell-cycle entry. In each case, peak Ras activation occurred in mid-G1 phase. Ras activation in HeLa cells at mid-G1 phase was dependent on RNA and protein synthesis and was not associated with tyrosine phosphorylation of Shc proteins and their binding to Grb2. Significantly, activation of Ras and the extracellular-signal regulated (ERK) subgroup of mitogen-activated protein kinases were not temporally correlated during G1-phase progression.Conclusions Activation of Ras during mid-G1 phase appears to differ in many respects from its rapid activation by growth factors, suggesting a novel mechanism of regulation that may be intrinsic to cell-cycle progression. Furthermore, the temporal dissociation between Ras and ERK activation suggests that Ras targets alternate effector pathways during G1-phase progression
    • …
    corecore