1,477 research outputs found
Fabrication of mirror templates in silica with micron-sized radii of curvature
We present the fabrication of exceptionally small-radius concave microoptics
on fused silica substrates using CO2 laser ablation and subsequent reactive ion
etching. The protocol yields on-axis near-Gaussian depressions with radius of
curvature microns at shallow depth and low surface roughness of 2
angstroms. This geometry is appealing for cavity quantum electrodynamics where
small mode volumes and low scattering losses are desired. We study the optical
performance of the structure within a tunable Fabry-Perot type microcavity,
demonstrate near-coating-limited loss rates (F = 25,000) and small focal
lengths consistent with their geometrical dimensions.Comment: 5 pages, 4 figure
Spin-Polarized Electrons in Monolayer MoS
The optical susceptibility is a local, minimally-invasive and spin-selective
probe of the ground state of a two-dimensional electron gas. We apply this
probe to a gated monolayer of MoS. We demonstrate that the electrons are
spin polarized. Of the four available bands, only two are occupied. These two
bands have the same spin but different valley quantum numbers. We argue that
strong Coulomb interactions are a key aspect of this spontaneous symmetry
breaking. The Bohr radius is so small that even electrons located far apart in
phase space interact, facilitating exchange couplings to align the spins
Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond
The nitrogen-vacancy (NV) center in diamond has an optically addressable,
highly coherent spin. However, an NV center even in high quality
single-crystalline material is a very poor source of single photons: extraction
out of the high-index diamond is inefficient, the emission of coherent photons
represents just a few per cent of the total emission, and the decay time is
large. In principle, all three problems can be addressed with a resonant
microcavity. In practice, it has proved difficult to implement this concept:
photonic engineering hinges on nano-fabrication yet it is notoriously difficult
to process diamond without degrading the NV centers. We present here a
microcavity scheme which uses minimally processed diamond, thereby preserving
the high quality of the starting material, and a tunable microcavity platform.
We demonstrate a clear change in the lifetime for multiple individual NV
centers on tuning both the cavity frequency and anti-node position, a Purcell
effect. The overall Purcell factor translates to a Purcell
factor for the zero phonon line (ZPL) of and an
increase in the ZPL emission probability from to . By
making a step-change in the NV's optical properties in a deterministic way,
these results pave the way for much enhanced spin-photon and spin-spin
entanglement rates.Comment: 6 pages, 4 figure
Voltage-Controlled Optics of a Quantum Dot
We show how the optical properties of a single semiconductor quantum dot can
be controlled with a small dc voltage applied to a gate electrode. We find that
the transmission spectrum of the neutral exciton exhibits two narrow lines with
eV linewidth. The splitting into two linearly polarized
components arises through an exchange interaction within the exciton. The
exchange interaction can be turned off by choosing a gate voltage where the dot
is occupied with an additional electron. Saturation spectroscopy demonstrates
that the neutral exciton behaves as a two-level system. Our experiments show
that the remaining problem for manipulating excitonic quantum states in this
system is spectral fluctuation on a eV energy scale.Comment: 4 pages, 4 figures; content as publishe
Transform-limited single photons from a single quantum dot
A semiconductor quantum dot mimics a two-level atom. Performance as a single
photon source is limited by decoherence and dephasing of the optical
transition. Even with high quality material at low temperature, the optical
linewidths are a factor of two larger than the transform-limit. A major
contributor to the inhomogeneous linewdith is the nuclear spin noise. We show
here that the nuclear spin noise depends on optical excitation, increasing
(decreasing) with increasing resonant laser power for the neutral (charged)
exciton. Based on this observation, we discover regimes where we demonstrate
transform-limited linewidths on both neutral and charged excitons even when the
measurement is performed very slowly
Quantum confined Stark effect in a MoS monolayer van der Waals heterostructure
The optics of dangling-bond-free van der Waals heterostructures containing
transition metal dichalcogenides are dominated by excitons. A crucial property
of a confined exciton is the quantum confined Stark effect (QCSE). Here, such a
heterostructure is used to probe the QCSE by applying a uniform vertical
electric field across a molybdenum disulfide (MoS) monolayer. The
photoluminescence emission energies of the neutral and charged excitons shift
quadratically with the applied electric field provided the electron density
remains constant, demonstrating that the exciton can be polarized. Stark shifts
corresponding to about half the homogeneous linewidth were achieved. Neutral
and charged exciton polarizabilities of (7.8~\pm~1.0)\times
10^{-10}~\tr{D~m~V}^{-1} and (6.4~\pm~0.9)\times 10^{-10}~\tr{D~m~V}^{-1} at
relatively low electron density (8 \times 10^{11}~\tr{cm}^{-2}) have been
extracted, respectively. These values are one order of magnitude lower than the
previously reported values, but in line with theoretical calculations. The
methodology presented here is versatile and can be applied to other
semiconducting layered materials as well
GHz bandwidth electro-optics of a single self-assembled quantum dot in a charge-tunable device
The response of a single InGaAs quantum dot, embedded in a miniaturized
charge-tunable device, to an applied GHz bandwidth electrical pulse is
investigated via its optical response. Quantum dot response times of 1.0 \pm
0.1 ns are characterized via several different measurement techniques,
demonstrating GHz bandwidth electrical control. Furthermore a novel optical
detection technique based on resonant electron-hole pair generation in the
hybridization region is used to map fully the voltage pulse experienced by the
quantum dot, showing in this case a simple exponential rise.Comment: 7 pages, 4 figure
Epitaxial lift-off for solid-state cavity quantum electrodynamics
We present a new approach to incorporate self-assembled quantum dots into a
Fabry-P\'{e}rot-like microcavity. Thereby a 3/4 GaAs layer containing
quantum dots is epitaxially removed and attached by van der Waals bonding to
one of the microcavity mirrors. We reach a finesse as high as 4,100 with this
configuration limited by the reflectivity of the dielectric mirrors and not by
scattering at the semiconductor - mirror interface, demonstrating that the
epitaxial lift-off procedure is a promising procedure for cavity quantum
electrodynamics in the solid state. As a first step in this direction, we
demonstrate a clear cavity-quantum dot interaction in the weak coupling regime
with a Purcell factor in the order of 3. Estimations of the coupling strength
via the Purcell factor suggests that we are close to the strong coupling
regime.Comment: 6 pages, 4 figure
Simple atomic quantum memory suitable for semiconductor quantum dot single photons
Quantum memories matched to single photon sources will form an important
cornerstone of future quantum network technology. We demonstrate such a memory
in warm Rb vapor with on-demand storage and retrieval, based on
electromagnetically induced transparency. With an acceptance bandwidth of
= 0.66~GHz the memory is suitable for single photons emitted by
semiconductor quantum dots. In this regime, vapor cell memories offer an
excellent compromise between storage efficiency, storage time, noise level, and
experimental complexity, and atomic collisions have negligible influence on the
optical coherences. Operation of the memory is demonstrated using attenuated
laser pulses on the single photon level. For 50 ns storage time we measure
\emph{end-to-end efficiency}
of the fiber-coupled memory, with an \emph{total intrinsic efficiency}
. Straightforward technological improvements can
boost the end-to-end-efficiency to ; beyond
that increasing the optical depth and exploiting the Zeeman substructure of the
atoms will allow such a memory to approach near unity efficiency.
In the present memory, the unconditional readout noise level of photons is dominated by atomic fluorescence, and for input pulses
containing on average photons the signal to noise level would
be unity
High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors
Recent progress in the development of superconducting nanowire single-photon
detectors (SNSPDs) made of amorphous material has delivered excellent
performances, and has had a great impact on a range of research fields. Despite
showing the highest system detection efficiency (SDE) ever reported with
SNSPDs, amorphous materials typically lead to lower critical currents, which
impacts on their jitter performance. Combining a very low jitter and a high SDE
remains a challenge. Here, we report on highly efficient superconducting
nanowire single-photon detectors based on amorphous MoSi, combining system
jitters as low as 26 ps and a SDE of 80% at 1550 nm. We also report detailed
observations on the jitter behaviour, which hints at intrinsic limitations and
leads to practical implications for SNSPD performance
- …