9 research outputs found

    Estimating the basic reproduction rate of HFMD using the time series SIR model in Guangdong, China

    No full text
    <div><p>Hand, foot, and mouth disease (HFMD) has caused a substantial burden of disease in China, especially in Guangdong Province. Based on notifiable cases, we use the time series Susceptible-Infected-Recovered model to estimate the basic reproduction rate (R0) and the herd immunity threshold, understanding the transmission and persistence of HFMD more completely for efficient intervention in this province. The standardized difference between the reported and fitted time series of HFMD was 0.009 (<0.2). The median basic reproduction rate of total, enterovirus 71, and coxsackievirus 16 cases in Guangdong were 4.621 (IQR: 3.907–5.823), 3.023 (IQR: 2.289–4.292) and 7.767 (IQR: 6.903–10.353), respectively. The heatmap of R0 showed semiannual peaks of activity, including a major peak in spring and early summer (about the 12<sup>th</sup> week) followed by a smaller peak in autumn (about the 36<sup>th</sup> week). The county-level model showed that Longchuan (R0 = 33), Gaozhou (R0 = 24), Huazhou (R0 = 23) and Qingxin (R0 = 19) counties have higher basic reproduction rate than other counties in the province. The epidemic of HFMD in Guangdong Province is still grim, and strategies like the World Health Organization’s expanded program on immunization need to be implemented. An elimination of HFMD in Guangdong might need a Herd Immunity Threshold of 78%.</p></div

    Heatmap of bi-weekly R0 by city.

    No full text
    <p>The dendrogram on the left side was the result of the clustering analysis.</p

    County-specific R0 of HFMD in Guangdong.

    No full text
    <p>This map was downloaded from OpenStreetMap (OpenStreetMap Foundation, London, United Kingdom) and processed by and R version 3.3.2 (R Core Team, Vienna, Austria).</p

    DataSheet_1_Pam2CSK4-adjuvanted SARS-CoV-2 RBD nanoparticle vaccine induces robust humoral and cellular immune responses.pdf

    No full text
    As the global COVID-19 pandemic continues and new SARS-CoV-2 variants of concern emerge, vaccines remain an important tool for preventing the pandemic. The inactivated or subunit vaccines themselves generally exhibit low immunogenicity, which needs adjuvants to improve the immune response. We previously developed a receptor binding domain (RBD)-targeted and self-assembled nanoparticle to elicit a potent immune response in both mice and rhesus macaques. Herein, we further improved the RBD production in the eukaryote system by in situ Crispr/Cas9-engineered CHO cells. By comparing the immune effects of various Toll-like receptor-targeted adjuvants to enhance nanoparticle vaccine immunization, we found that Pam2CSK4, a TLR2/6 agonist, could mostly increase the titers of antigen-specific neutralizing antibodies and durability in humoral immunity. Remarkably, together with Pam2CSK4, the RBD-based nanoparticle vaccine induced a significant Th1-biased immune response and enhanced the differentiation of both memory T cells and follicular helper T cells. We further found that Pam2CSK4 upregulated migration genes and many genes involved in the activation and proliferation of leukocytes. Our data indicate that Pam2CSK4 targeting TLR2, which has been shown to be effective in tuberculosis vaccines, is the optimal adjuvant for the SARS-CoV-2 nanoparticle vaccine, paving the way for an immediate clinical trial.</p

    Data_Sheet_1_The impact of monthly air pollution exposure and its interaction with individual factors: Insight from a large cohort study of comprehensive hospitalizations in Guangzhou area.pdf

    No full text
    BackgroundAlthough the association between short-term air pollution exposure and certain hospitalizations has been well documented, evidence on the effect of longer-term (e. g., monthly) air pollution on a comprehensive set of outcomes is still limited.MethodA total of 68,416 people in South China were enrolled and followed up during 2019–2020. Monthly air pollution level was estimated using a validated ordinary Kriging method and assigned to individuals. Time-dependent Cox models were developed to estimate the relationship between monthly PM10 and O3 exposures and the all-cause and cause-specific hospitalizations after adjusting for confounders. The interaction between air pollution and individual factors was also investigated.ResultsOverall, each 10 μg/m3 increase in PM10 concentration was associated with a 3.1% (95%CI: 1.3%−4.9%) increment in the risk of all-cause hospitalization. The estimate was even greater following O3 exposure (6.8%, 5.5%−8.2%). Furthermore, each 10 μg/m3 increase in PM10 was associated with a 2.3%-9.1% elevation in all the cause-specific hospitalizations except for those related to respiratory and digestive diseases. The same increment in O3 was relevant to a 4.7%−22.8% elevation in the risk except for respiratory diseases. Additionally, the older individuals tended to be more vulnerable to PM10 exposure (Pinteraction: 0.002), while the alcohol abused and those with an abnormal BMI were more vulnerable to the impact of O3 (Pinteraction: 0.052 and 0.011). However, the heavy smokers were less vulnerable to O3 exposure (Pinteraction: 0.032).ConclusionWe provide comprehensive evidence on the hospitalization hazard of monthly PM10 and O3 exposure and their interaction with individual factors.</p
    corecore