41,020 research outputs found

    Analysis of the Ξ›c(2860)\Lambda_c(2860), Ξ›c(2880)\Lambda_c(2880), Ξc(3055)\Xi_c(3055) and Ξc(3080)\Xi_c(3080) as D-wave baryon states with QCD sum rules

    Full text link
    In this article, we tentatively assign the Ξ›c(2860)\Lambda_c(2860), Ξ›c(2880)\Lambda_c(2880), Ξc(3055)\Xi_c(3055) and Ξc(3080)\Xi_c(3080) to be the D-wave baryon states with the spin-parity JP=32+J^P={\frac{3}{2}}^+, 52+{\frac{5}{2}}^+, 32+{\frac{3}{2}}^+ and 52+{\frac{5}{2}}^+, respectively, and study their masses and pole residues with the QCD sum rules in a systematic way by constructing three-types interpolating currents with the quantum numbers (Lρ,LΞ»)=(0,2)(L_\rho,L_\lambda)=(0,2), (2,0)(2,0) and (1,1)(1,1), respectively. The present predictions favor assigning the Ξ›c(2860)\Lambda_c(2860), Ξ›c(2880)\Lambda_c(2880), Ξc(3055)\Xi_c(3055) and Ξc(3080)\Xi_c(3080) to be the D-wave baryon states with the quantum numbers (Lρ,LΞ»)=(0,2)(L_\rho,L_\lambda)=(0,2) and JP=32+J^P={\frac{3}{2}}^+, 52+{\frac{5}{2}}^+, 32+{\frac{3}{2}}^+ and 52+{\frac{5}{2}}^+, respectively. While the predictions for the masses of the (Lρ,LΞ»)=(2,0)(L_\rho,L_\lambda)=(2,0) and (1,1)(1,1) D-wave Ξ›c\Lambda_c and Ξc\Xi_c states can be confronted to the experimental data in the future.Comment: 26 pages, 25 figure

    Analysis of the QQQˉQˉQQ\bar{Q}\bar{Q} tetraquark states with QCD sum rules

    Full text link
    In this article, we study the JPC=0++J^{PC}=0^{++} and 2++2^{++} QQQΛ‰QΛ‰QQ\bar{Q}\bar{Q} tetraquark states with the QCD sum rules, and obtain the predictions MX(cccΛ‰cΛ‰,0++)=5.99Β±0.08 GeVM_{X(cc\bar{c}\bar{c},0^{++})} =5.99\pm0.08\,\rm{GeV}, MX(cccΛ‰cΛ‰,2++)=6.09Β±0.08 GeVM_{X(cc\bar{c}\bar{c},2^{++})} =6.09\pm0.08\,\rm{GeV}, MX(bbbΛ‰bΛ‰,0++)=18.84Β±0.09 GeVM_{X(bb\bar{b}\bar{b},0^{++})} =18.84\pm0.09\,\rm{GeV} and MX(bbbΛ‰bΛ‰,2++)=18.85Β±0.09 GeVM_{X(bb\bar{b}\bar{b},2^{++})}=18.85\pm0.09\,\rm{GeV}, which can be confronted to the experimental data in the future. Furthermore, we illustrate that the diquark-antidiquark type tetraquark state can be taken as a special superposition of a series of meson-meson pairs and embodies the net effects.Comment: 18 pages, 17 figure

    Reanalysis of the Y(3940)Y(3940), Y(4140)Y(4140), Zc(4020)Z_c(4020), Zc(4025)Z_c(4025) and Zb(10650)Z_b(10650) as molecular states with QCD sum rules

    Get PDF
    In this article, we calculate the contributions of the vacuum condensates up to dimension-10 in the operator product expansion, and study the JPC=0++J^{PC}=0^{++}, 1+βˆ’1^{+-}, 2++2^{++} Dβˆ—DΛ‰βˆ—D^*\bar{D}^*, Dsβˆ—DΛ‰sβˆ—D_s^*\bar{D}_s^*, Bβˆ—BΛ‰βˆ—B^*\bar{B}^*, Bsβˆ—BΛ‰sβˆ—B_s^*\bar{B}_s^* molecular states with the QCD sum rules. In calculations, we use the formula ΞΌ=MX/Y/Z2βˆ’(2MQ)2\mu=\sqrt{M^2_{X/Y/Z}-(2{\mathbb{M}}_Q)^2} to determine the energy scales of the QCD spectral densities. The numerical results favor assigning the Zc(4020)Z_c(4020) and Zc(4025)Z_c(4025) as the JPC=0++J^{PC}=0^{++}, 1+βˆ’1^{+-} or 2++2^{++} Dβˆ—DΛ‰βˆ—D^*\bar{D}^* molecular states, the Y(4140)Y(4140) as the JPC=0++J^{PC}=0^{++} Dsβˆ—Dsβˆ—D^*_s{D}_s^* molecular state, the Zb(10650)Z_b(10650) as the JPC=1+βˆ’J^{PC}=1^{+-} Bβˆ—BΛ‰βˆ—B^*\bar{B}^* molecular state, and disfavor assigning the Y(3940)Y(3940) as the (JPC=0++J^{PC}=0^{++}) molecular state. The present predictions can be confronted to the experimental data in the futures.Comment: 24 pages, 26 figures. arXiv admin note: substantial text overlap with arXiv:1312.1537, arXiv:1312.7489, arXiv:1311.1046, arXiv:1312.265
    • …
    corecore