48,006 research outputs found

    Factorization, resummation and sum rules for heavy-to-light form factors

    Full text link
    Precision calculations of heavy-to-light form factors are essential to sharpen our understanding towards the strong interaction dynamics of the heavy-quark system and to shed light on a coherent solution of flavor anomalies. We briefly review factorization properties of heavy-to-light form factors in the framework of QCD factorization in the heavy quark limit and discuss the recent progress on the QCD calculation of B→πB \to \pi form factors from the light-cone sum rules with the BB-meson distribution amplitudes. Demonstration of QCD factorization for the vacuum-to-BB-meson correlation function used in the sum-rule construction and resummation of large logarithms in the short-distance functions entering the factorization theorem are presented in detail. Phenomenological implications of the newly derived sum rules for B→πB \to \pi form factors are further addressed with a particular attention to the extraction of the CKM matrix element ∣Vub∣|V_{ub}|.Comment: 6 pages, 3 figures, proceedings prepared for the "QCD@work 2016", (27-30 June 2016, Martina Franca, Italy

    Non-dipolar gauge links for transverse-momentum-dependent pion wave functions

    Full text link
    I discuss the factorization-compatible definitions of transverse-momentum-dependent (TMD) pion wave functions which are fundamental theory inputs entering QCD factorization formulae for many hard exclusive processes. I will first demonstrate that the soft subtraction factor introduced to remove both rapidity and pinch singularities can be greatly reduced by making the maximal use of the freedom to construct the Wilson-line paths when defining the TMD wave functions. I will then turn to show that the newly proposed TMD definition with non-dipolar Wilson lines is equivalent to the one with dipolar gauge links and with a complicated soft function, to all orders of the perturbative expansion in the strong coupling, as far as the infrared behavior is concerned.Comment: 7 pages, 3 figure

    Rapidity resummation for BB-meson wave functions

    Full text link
    Transverse-momentum dependent (TMD) hadronic wave functions develop light-cone divergences under QCD corrections, which are commonly regularized by the rapidity ζ\zeta of gauge vector defining the non-light-like Wilson lines. The yielding rapidity logarithms from infrared enhancement need to be resummed for both hadronic wave functions and short-distance functions, to achieve scheme-independent calculations of physical quantities. We briefly review the recent progress on the rapidity resummation for BB-meson wave functions which are the key ingredients of TMD factorization formulae for radiative-leptonic, semi-leptonic and non-leptonic BB-meson decays. The crucial observation is that rapidity resummation induces a strong suppression of BB-meson wave functions at small light-quark momentum, strengthening the applicability of TMD factorization in exclusive BB-meson decays. The phenomenological consequence of rapidity-resummation improved BB-meson wave functions is further discussed in the context of B→πB \to \pi transition form factors at large hadronic recoil.Comment: 6 pages, 2 figures, Conference proceedings for the workshop of QCD@work, Giovinazzo (Italy), June 16-19, 201

    Anomalous Higgs couplings in angular asymmetries of H --> Zl+l- and e+e- --> HZ

    Get PDF
    We study in detail the impact of anomalous Higgs couplings in angular asymmetries of the crossing-symmetric processes H --> Zl+l- and e+e- --> HZ. Beyond Standard Model physics is parametrized in terms of the SU(3)xSU(2)_LxU(1)_Y dimension-six effective Lagrangian. In the light of present bounds on d = 6 interactions we study how angular asymmetries can reveal non-standard CP-even and CP-odd couplings. We provide approximate expressions to all observables of interest making transparent their dominant dependence on anomalous couplings. We show that some asymmetries may reveal BSM effects that are hidden in other observables. In particular, CP-even and CP-odd d = 6 HZgamma couplings as well as (to a lesser extent) HZll contact interactions can generate asymmetries at the several percent level, while having small or no effects on the di-lepton invariant mass spectrum of H --> Zl+l-. Finally, the higher di-lepton invariant mass probed in e+e- --> HZ leads to interesting differences in the asymmetries with respect to those of H --> Zl+l- that may lead to complementary anomalous coupling searches at the LHC and e+e- colliders.Comment: 34 pages, 14 figures. Minor changes, one additional figure (Fig. 5), one reference added (Ref. [34]). Matches published versio
    • …
    corecore