32 research outputs found

    Supervised Hypergraph Reconstruction

    Full text link
    We study an issue commonly seen with graph data analysis: many real-world complex systems involving high-order interactions are best encoded by hypergraphs; however, their datasets often end up being published or studied only in the form of their projections (with dyadic edges). To understand this issue, we first establish a theoretical framework to characterize this issue's implications and worst-case scenarios. The analysis motivates our formulation of the new task, supervised hypergraph reconstruction: reconstructing a real-world hypergraph from its projected graph, with the help of some existing knowledge of the application domain. To reconstruct hypergraph data, we start by analyzing hyperedge distributions in the projection, based on which we create a framework containing two modules: (1) to handle the enormous search space of potential hyperedges, we design a sampling strategy with efficacy guarantees that significantly narrows the space to a smaller set of candidates; (2) to identify hyperedges from the candidates, we further design a hyperedge classifier in two well-working variants that capture structural features in the projection. Extensive experiments validate our claims, approach, and extensions. Remarkably, our approach outperforms all baselines by an order of magnitude in accuracy on hard datasets. Our code and data can be downloaded from bit.ly/SHyRe

    Microstructures and Accuracy of Graph Recall by Large Language Models

    Full text link
    Graphs data is crucial for many applications, and much of it exists in the relations described in textual format. As a result, being able to accurately recall and encode a graph described in earlier text is a basic yet pivotal ability that LLMs need to demonstrate if they are to perform reasoning tasks that involve graph-structured information. Human performance at graph recall has been studied by cognitive scientists for decades, and has been found to often exhibit certain structural patterns of bias that align with human handling of social relationships. To date, however, we know little about how LLMs behave in analogous graph recall tasks: do their recalled graphs also exhibit certain biased patterns, and if so, how do they compare with humans and affect other graph reasoning tasks? In this work, we perform the first systematical study of graph recall by LLMs, investigating the accuracy and biased microstructures (local structural patterns) in their recall. We find that LLMs not only underperform often in graph recall, but also tend to favor more triangles and alternating 2-paths. Moreover, we find that more advanced LLMs have a striking dependence on the domain that a real-world graph comes from -- by yielding the best recall accuracy when the graph is narrated in a language style consistent with its original domain.Comment: 16 pages, 7 tables, 5 figure

    Algorithm and System Co-design for Efficient Subgraph-based Graph Representation Learning

    Full text link
    Subgraph-based graph representation learning (SGRL) has been recently proposed to deal with some fundamental challenges encountered by canonical graph neural networks (GNNs), and has demonstrated advantages in many important data science applications such as link, relation and motif prediction. However, current SGRL approaches suffer from scalability issues since they require extracting subgraphs for each training or test query. Recent solutions that scale up canonical GNNs may not apply to SGRL. Here, we propose a novel framework SUREL for scalable SGRL by co-designing the learning algorithm and its system support. SUREL adopts walk-based decomposition of subgraphs and reuses the walks to form subgraphs, which substantially reduces the redundancy of subgraph extraction and supports parallel computation. Experiments over six homogeneous, heterogeneous and higher-order graphs with millions of nodes and edges demonstrate the effectiveness and scalability of SUREL. In particular, compared to SGRL baselines, SUREL achieves 10×\times speed-up with comparable or even better prediction performance; while compared to canonical GNNs, SUREL achieves 50% prediction accuracy improvement.Comment: This is an extended version of the full paper to appear in PVLDB 15.11(VLDB 2022

    Inductive Representation Learning in Temporal Networks via Causal Anonymous Walks

    Full text link
    Temporal networks serve as abstractions of many real-world dynamic systems. These networks typically evolve according to certain laws, such as the law of triadic closure, which is universal in social networks. Inductive representation learning of temporal networks should be able to capture such laws and further be applied to systems that follow the same laws but have not been unseen during the training stage. Previous works in this area depend on either network node identities or rich edge attributes and typically fail to extract these laws. Here, we propose Causal Anonymous Walks (CAWs) to inductively represent a temporal network. CAWs are extracted by temporal random walks and work as automatic retrieval of temporal network motifs to represent network dynamics while avoiding the time-consuming selection and counting of those motifs. CAWs adopt a novel anonymization strategy that replaces node identities with the hitting counts of the nodes based on a set of sampled walks to keep the method inductive, and simultaneously establish the correlation between motifs. We further propose a neural-network model CAW-N to encode CAWs, and pair it with a CAW sampling strategy with constant memory and time cost to support online training and inference. CAW-N is evaluated to predict links over 6 real temporal networks and uniformly outperforms previous SOTA methods by averaged 10% AUC gain in the inductive setting. CAW-N also outperforms previous methods in 4 out of the 6 networks in the transductive setting.Comment: Published in ICLR 2021. A bug in previous versions is fixe

    Correlated states in twisted double bilayer graphene

    Full text link
    Electron-electron interactions play an important role in graphene and related systems and can induce exotic quantum states, especially in a stacked bilayer with a small twist angle. For bilayer graphene where the two layers are twisted by a "magic angle", flat band and strong many-body effects lead to correlated insulating states and superconductivity. In contrast to monolayer graphene, the band structure of untwisted bilayer graphene can be further tuned by a displacement field, providing an extra degree of freedom to control the flat band that should appear when two bilayers are stacked on top of each other. Here, we report the discovery and characterization of such displacement-field tunable electronic phases in twisted double bilayer graphene. We observe insulating states at a half-filled conduction band in an intermediate range of displacement fields. Furthermore, the resistance gap in the correlated insulator increases with respect to the in-plane magnetic fields and we find that the g factor according to spin Zeeman effect is ~2, indicating spin polarization at half filling. These results establish the twisted double bilayer graphene as an easily tunable platform for exploring quantum many-body states
    corecore