438 research outputs found
STG2Seq: Spatial-temporal Graph to Sequence Model for Multi-step Passenger Demand Forecasting
Multi-step passenger demand forecasting is a crucial task in on-demand
vehicle sharing services. However, predicting passenger demand over multiple
time horizons is generally challenging due to the nonlinear and dynamic
spatial-temporal dependencies. In this work, we propose to model multi-step
citywide passenger demand prediction based on a graph and use a hierarchical
graph convolutional structure to capture both spatial and temporal correlations
simultaneously. Our model consists of three parts: 1) a long-term encoder to
encode historical passenger demands; 2) a short-term encoder to derive the
next-step prediction for generating multi-step prediction; 3) an
attention-based output module to model the dynamic temporal and channel-wise
information. Experiments on three real-world datasets show that our model
consistently outperforms many baseline methods and state-of-the-art models.Comment: 7 page
Long-Term Effects of Tillage and Residue Management on the Soil Microbial Community Structure in the Loess Plateau
The severe soil erosion present in the Loess Plateau of western China has resulted from a combination of highly erodible soil, variable rainfall and intensive cultivation (Shi and Shao 2000). Conservation agriculture practices, including no till, crop residue retention and crop rotation, have been found to increase crop yield, improve water use efficiency, reduce energy inputs and improve soil fertility (Bukert et al. 2000; Rahman et al. 2008). The soil microbial community function and structure play key roles in the decomposition of organic matter, nutrient cycling and altering the availability of nutrients to plants, which has been shown to change under conservation agriculture (González-Chávez et al. 2010). The aims of our research are to quantify impacts of tillage and crop residue management on soil microbial community structural diversity on the Loess Plateau by PLFA techniques
Multi-Person Brain Activity Recognition via Comprehensive EEG Signal Analysis
An electroencephalography (EEG) based brain activity recognition is a
fundamental field of study for a number of significant applications such as
intention prediction, appliance control, and neurological disease diagnosis in
smart home and smart healthcare domains. Existing techniques mostly focus on
binary brain activity recognition for a single person, which limits their
deployment in wider and complex practical scenarios. Therefore, multi-person
and multi-class brain activity recognition has obtained popularity recently.
Another challenge faced by brain activity recognition is the low recognition
accuracy due to the massive noises and the low signal-to-noise ratio in EEG
signals. Moreover, the feature engineering in EEG processing is time-consuming
and highly re- lies on the expert experience. In this paper, we attempt to
solve the above challenges by proposing an approach which has better EEG
interpretation ability via raw Electroencephalography (EEG) signal analysis for
multi-person and multi-class brain activity recognition. Specifically, we
analyze inter-class and inter-person EEG signal characteristics, based on which
to capture the discrepancy of inter-class EEG data. Then, we adopt an
Autoencoder layer to automatically refine the raw EEG signals by eliminating
various artifacts. We evaluate our approach on both a public and a local EEG
datasets and conduct extensive experiments to explore the effect of several
factors (such as normalization methods, training data size, and Autoencoder
hidden neuron size) on the recognition results. The experimental results show
that our approach achieves a high accuracy comparing to competitive
state-of-the-art methods, indicating its potential in promoting future research
on multi-person EEG recognition.Comment: 10 page
Resolution of Ties in Parametric Quadratic Programming
We consider the convex parametric quadratic programming problem when the end of the parametric interval is caused by a multiplicity of possibilities ("ties"). In such cases, there is no clear way for the proper active set to be determined for the parametric analysis to continue. In this thesis, we show that the proper active set may be determined in general by solving a certain non-parametric quadratic programming problem. We simplify the parametric quadratic programming problem with a parameter both in the linear part of the objective function and in the right-hand side of the constraints to a quadratic programming without a parameter. We break the analysis into three parts. We first study the parametric quadratic programming problem with a parameter only in the linear part of the objective function, and then a parameter only in the right-hand side of the constraints. Each of these special cases is transformed into a quadratic programming problem having no parameters. A similar approach is then applied to the parametric quadratic programming problem having a parameter both in the linear part of the objective function and in the right-hand side of the constraints
- …