697 research outputs found

    Multi-Agent Distributed Optimization via Inexact Consensus ADMM

    Get PDF
    Multi-agent distributed consensus optimization problems arise in many signal processing applications. Recently, the alternating direction method of multipliers (ADMM) has been used for solving this family of problems. ADMM based distributed optimization method is shown to have faster convergence rate compared with classic methods based on consensus subgradient, but can be computationally expensive, especially for problems with complicated structures or large dimensions. In this paper, we propose low-complexity algorithms that can reduce the overall computational cost of consensus ADMM by an order of magnitude for certain large-scale problems. Central to the proposed algorithms is the use of an inexact step for each ADMM update, which enables the agents to perform cheap computation at each iteration. Our convergence analyses show that the proposed methods converge well under some convexity assumptions. Numerical results show that the proposed algorithms offer considerably lower computational complexity than the standard ADMM based distributed optimization methods.Comment: submitted to IEEE Trans. Signal Processing; Revised April 2014 and August 201

    Deep Extreme Multi-label Learning

    Full text link
    Extreme multi-label learning (XML) or classification has been a practical and important problem since the boom of big data. The main challenge lies in the exponential label space which involves 2L2^L possible label sets especially when the label dimension LL is huge, e.g., in millions for Wikipedia labels. This paper is motivated to better explore the label space by originally establishing an explicit label graph. In the meanwhile, deep learning has been widely studied and used in various classification problems including multi-label classification, however it has not been properly introduced to XML, where the label space can be as large as in millions. In this paper, we propose a practical deep embedding method for extreme multi-label classification, which harvests the ideas of non-linear embedding and graph priors-based label space modeling simultaneously. Extensive experiments on public datasets for XML show that our method performs competitive against state-of-the-art result

    Solving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers

    Full text link
    In this paper, we consider solving multiple-block separable convex minimization problems using alternating direction method of multipliers (ADMM). Motivated by the fact that the existing convergence theory for ADMM is mostly limited to the two-block case, we analyze in this paper, both theoretically and numerically, a new strategy that first transforms a multi-block problem into an equivalent two-block problem (either in the primal domain or in the dual domain) and then solves it using the standard two-block ADMM. In particular, we derive convergence results for this two-block ADMM approach to solve multi-block separable convex minimization problems, including an improved O(1/\epsilon) iteration complexity result. Moreover, we compare the numerical efficiency of this approach with the standard multi-block ADMM on several separable convex minimization problems which include basis pursuit, robust principal component analysis and latent variable Gaussian graphical model selection. The numerical results show that the multiple-block ADMM, although lacks theoretical convergence guarantees, typically outperforms two-block ADMMs

    Quasiparticle interference of C2-symmetric surface states in LaOFeAs parent compound

    Full text link
    We present scanning tunneling microscopy studies of the LaOFeAs parent compound of iron pnictide superconductors. Topographic imaging reveals two types of atomically flat surfaces, corresponding to the exposed LaO layer and FeAs layer respectively. On one type of surface, we observe strong standing wave patterns induced by quasiparticle interference of two-dimensional surface states. The distribution of scattering wavevectors exhibits pronounced two-fold symmetry, consistent with the nematic electronic structure found in the Ca(Fe1-xCox)2As2 parent state.Comment: 13 pages, 4 figure

    Outage Constrained Robust Secure Transmission for MISO Wiretap Channels

    Full text link
    In this paper we consider the robust secure beamformer design for MISO wiretap channels. Assume that the eavesdroppers' channels are only partially available at the transmitter, we seek to maximize the secrecy rate under the transmit power and secrecy rate outage probability constraint. The outage probability constraint requires that the secrecy rate exceeds certain threshold with high probability. Therefore including such constraint in the design naturally ensures the desired robustness. Unfortunately, the presence of the probabilistic constraints makes the problem non-convex and hence difficult to solve. In this paper, we investigate the outage probability constrained secrecy rate maximization problem using a novel two-step approach. Under a wide range of uncertainty models, our developed algorithms can obtain high-quality solutions, sometimes even exact global solutions, for the robust secure beamformer design problem. Simulation results are presented to verify the effectiveness and robustness of the proposed algorithms