285,275 research outputs found

    A thermodynamic theory for thermal-gradient-driven domain wall motion

    Full text link
    Spin waves (or magnons) interact with magnetic domain walls (DWs) in a complicated way that a DW can propagate either along or against magnon flow. However, thermally activated magnons always drive a DW to the hotter region of a nanowire of magnetic insulators under a temperature gradient. We theoretically illustrate why it is surely so by showing that DW entropy is always larger than that of a domain as long as material parameters do not depend on spin textures. Equivalently, the total free energy of the wire can be lowered when the DW moves to the hotter region. The larger DW entropy is related to the increase of magnon density of states at low energy originated from the gapless magnon bound states

    Thermal gradient driven domain wall dynamics

    Get PDF
    The issue of whether a thermal gradient acts like a magnetic field or an electric current in the domain wall (DW) dynamics is investigated. Broadly speaking, magnetization control knobs can be classified as energy-driving or angular-momentum driving forces. DW propagation driven by a static magnetic field is the best-known example of the former in which the DW speed is proportional to the energy dissipation rate, and the current-driven DW motion is an example of the latter. Here we show that DW propagation speed driven by a thermal gradient can be fully explained as the angular momentum transfer between thermally generated spin current and DW. We found DW-plane rotation speed increases as DW width decreases. Both DW propagation speed along the wire and DW-plane rotation speed around the wire decrease with the Gilbert damping. These facts are consistent with the angular momentum transfer mechanism, but are distinct from the energy dissipation mechanism. We further show that magnonic spin-transfer torque (STT) generated by a thermal gradient has both damping-like and field-like components. By analyzing DW propagation speed and DW-plane rotation speed, the coefficient ( \b{eta}) of the field-like STT arising from the non-adiabatic process, is obtained. It is found that \b{eta} does not depend on the thermal gradient; increases with uniaxial anisotropy K_(||) (thinner DW); and decreases with the damping, in agreement with the physical picture that a larger damping or a thicker DW leads to a better alignment between the spin-current polarization and the local magnetization, or a better adiabaticity

    Breaking the current density threshold in spin-orbit-torque magnetic random access memory

    Full text link
    Spin-orbit-torque magnetic random access memory (SOT-MRAM) is a promising technology for the next generation of data storage devices. The main bottleneck of this technology is the high reversal current density threshold. This outstanding problem of SOT-MRAM is now solved by using a current density of constant magnitude and varying flow direction that reduces the reversal current density threshold by a factor of more than the Gilbert damping coefficient. The Euler-Lagrange equation for the fastest magnetization reversal path and the optimal current pulse are derived for an arbitrary magnetic cell. The theoretical limit of minimal reversal current density and current density for a GHz switching rate of the new reversal strategy for CoFeB/Ta SOT-MRAMs are respectively of the order of 10510^5 A/cm2^2 and 10610^6 A/cm2^2 far below 10710^7 A/cm2^2 and 10810^8 A/cm2^2 in the conventional strategy. Furthermore, no external magnetic field is needed for a deterministic reversal in the new strategy

    Improvement of critical current in MgB2/Fe wires by a ferromagnetic sheath

    Full text link
    Transport critical current (Ic) was measured for Fe-sheathed MgB2 round wires. A critical current density of 5.3 x 10^4 A/cm^2 was obtained at 32K. Strong magnetic shielding by the iron sheath was observed, resulting in a decrease in Ic by only 15% in a field of 0.6T at 32K. In addition to shielding, interaction between the iron sheath and the superconductor resulted in a constant Ic between 0.2 and 0.6T. This was well beyond the maximum field for effective shielding of 0.2T. This effect can be used to substantially improve the field performance of MgB2/Fe wires at fields at least 3 times higher than the range allowed by mere magnetic shielding by the iron sheath. The dependence of Ic on the angle between field and current showed that the transport current does not flow straight across the wire, but meanders between the grains
    • …
    corecore