89,175 research outputs found
Comment on "Time-Dependent Density-Matrix Renormalization Group: A Systematic Method for the Study of Quantum Many-Body Out-of- Equilibrium Systems"
In a recent Letter [Phys. Rev. Lett. 88, 256403(2002), cond-mat/0109158]
Cazalilla and Marston proposed a time-dependent density- matrix renormalization
group (TdDMRG) algorithm for the accurate evaluation of out-of-equilibrium
properties of quantum many-body systems. For a point contact junction between
two Luttinger liquids, a current oscillation develops after initial transient
in the insulating regime. Here we would like to point out that (a) the observed
oscillation is an artifact of the method; (b) the TdDMRG can be significantly
improved by incorporating the non-equilibrium evolution of the goundstate into
the density matrix.Comment: 1 page, 2 figure
Pygmy and Giant Dipole Resonances by Coulomb Excitation using a Quantum Molecular Dynamics model
Pygmy and Giant Dipole Resonance (PDR and GDR) in Ni isotopes have been
investigated by Coulomb excitation in the framework of the Isospin-dependent
Quantum Molecular Dynamics model (IQMD). The spectra of rays are
calculated and the peak energy, the strength and Full Width at Half Maximum
(FWHM) of GDR and PDR have been extracted. Their sensitivities to nuclear
equation of state, especially to its symmetry energy term are also explored. By
a comparison with the other mean-field calculations, we obtain the reasonable
values for symmetry energy and its slope parameter at saturation, which gives
an important constrain for IQMD model. In addition, we also studied the neutron
excess dependence of GDR and PDR parameters for Ni isotopes and found that the
energy-weighted sum rule (EWSR) increases linearly with
the neutron excess.Comment: 8 pages, 12 figure
Nucleon-nucleon momentum correlation function as a probe of the density distribution of valence neutron in neutron-rich nucleus
Proton-neutron, neutron-neutron and proton-proton momentum correlation
functions (, , ) are systematically investigated for
C and other C isotopes induced collisions at different entrance channel
conditions within the framework of the isospin-dependent quantum molecular
dynamics (IDQMD) model complemented by the CRAB (correlation after burner)
computation code. C is a prime exotic nucleus candidate due to the
weakly bound valence neutron coupling with closed-neutron shell nucleus
C. In order to study density dependence of correlation function by
removing the isospin effect, the initialized C projectiles are sampled
from two kinds of density distribution from RMF model, in which the valence
neutron of C is populated on both 15/2 and 21/2 states,
respectively. The results show that the density distributions of valence
neutron significantly influence nucleon-nucleon momentum correlation function
at large impact parameter and high incident energy. The extended density
distribution of valence neutron largely weakens the strength of correlation
function. The size of emission source is extracted by fitting correlation
function using Gaussian source method. The emission source size as well as the
size of final state phase space is larger for projectiles sampling from more
extended density distribution of valence neutron corresponding 21/2 state in
RMF model. Therefore momentum correlation function can be considered as a
potential valuable tool to diagnose the exotic nuclear structure such as skin
and halo.Comment: 8 pages, 9 figures, 1 tabl
Critical behavior of the S=3/2 antiferromagnetic Heisenberg chain
Using the density-matrix renormalization-group technique we study the
long-wavelength properties of the spin S=3/2 nearest-neighbor Heisenberg chain.
We obtain an accurate value for the spin velocity v=3.8+- 0.02, in agreement
with experiment. Our results show conclusively that the model belongs to the
same universality class as the S=1/2 Heisenberg chain, with a conformal central
charge c=1 and critical exponent eta=1Comment: RevTeX (version 3.0), 4 twocolumn pages with 4 embedded figure
Superconductivity and Phase Diagram in (LiFe)OHFeSeS
A series of (LiFe)OHFeSeS (0 x 1)
samples were successfully synthesized via hydrothermal reaction method and the
phase diagram is established. Magnetic susceptibility suggests that an
antiferromagnetism arising from (LiFe)OH layers coexists with
superconductivity, and the antiferromagnetic transition temperature nearly
remains constant for various S doping levels. In addition, the lattice
parameters of the both a and c axes decrease and the superconducting transition
temperature T is gradually suppressed with the substitution of S for Se,
and eventually superconductivity vanishes at = 0.90. The decrease of T
could be attributed to the effect of chemical pressure induced by the smaller
ionic size of S relative to that of Se, being consistent with the effect of
hydrostatic pressure on (LiFe)OHFeSe. But the detailed
investigation on the relationships between and the crystallographic
facts suggests a very different dependence of on anion height from
the Fe2 layer or -Fe2- angle from those in FeAs-based superconductors.Comment: 6 pages, 6 figure
- β¦