1,381 research outputs found

    Magnetostructural Transformation and Magnetoresponsive Properties of MnNiGe1-xSnx Alloys

    Full text link
    The martensitic and magnetic phase transformations in MnNiGe1-xSnx (0 \leq x \leq 0.200) alloys were investigated using X-ray diffraction (XRD), differential thermal analysis (DTA) and magnetization measurements. Results indicate that the increasing Sn substitution in MnNiGe1-xSnx results in (i) decrease of martensitic transformation temperature from 460 to 100 K and (ii) conversion of AFM spiral to antiparallel AFM strcuture in martensite. Based on these, the remarkable magnetic-field-induced PM/spiral-AFM and FM/AFM magnetostructural transformations and, large positive and negative magnetocaloric effects are obtained. The magnetoresponsive effects of MnNiGe1-xSnx alloys are enhanced by Sn substitution. A structural and magnetic phase diagram of MnNiGe1-xSnx alloys has been proposed.Comment: 3 pages and 4 figure

    Half-titanocene 5-t-butyl-2-(1-(arylimino)methyl)quinolin-8-olate chlorides: Synthesis, characterization and ethylene (co-) polymerization behavior

    Get PDF
    A series of half-titanocene chloride complexes bearing 5-t-butyl-2-(1-(arylimino)methyl)quinolin-8-olate ligands (L), CpTiLCl₂, has been synthesized in acceptable yields by the stoichiometric reaction of CpTiCl₃ with the respective potassium 5-t-butyl-2-(1-(arylimino)methyl)quinolin-8-olate. All half-titanocene complexes were fully characterized by elemental analysis and NMR spectroscopy, and the molecular structures of the representative complexes C1 and C2 were confirmed as pseudo octahedral at titanium by single-crystal X-ray diffraction. When activated with methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all titanium complexes exhibited good activities (up to 4.8 × 10⁵ g mol⁻¹(Ti) h⁻¹) towards ethylene polymerization. The obtained polyethylene exhibited ultra-high molecular weight (up to 11.82 × 10⁵ g mol⁻¹) with narrow polydispersity. Furthermore, effective co-polymerization of ethylene with 1-hexene or 1-octene was achieved with several percentages of co-monomer incorporation in the resultant polyethylenes

    Single-spin scanning magnetic microscopy with radial basis function reconstruction algorithm

    Full text link
    Exotic magnetic structures, such as magnetic skyrmions and domain walls, are becoming more important in nitrogen-vacancy center scanning magnetometry. However, a systematic imaging approach to mapping stray fields with fluctuation of several milliteslas generated by such structures is not yet available. Here we present a scheme to image a millitesla magnetic field by tracking the magnetic resonance frequency, which can record multiple contour lines for a magnetic field. The radial basis function algorithm is employed to reconstruct the magnetic field from the contour lines. Simulations with shot noise quantitatively confirm the high quality of the reconstruction algorithm. The method was validated by imaging the stray field of a frustrated magnet. Our scheme had a maximum detectable magnetic field gradient of 0.86 mT per pixel, which enables the efficient imaging of millitesla magnetic fields.Comment: 5 pages, 3 figure
    corecore