12,101 research outputs found

    Regularized Principal Component Analysis for Spatial Data

    Full text link
    In many atmospheric and earth sciences, it is of interest to identify dominant spatial patterns of variation based on data observed at pp locations and nn time points with the possibility that p>np>n. While principal component analysis (PCA) is commonly applied to find the dominant patterns, the eigenimages produced from PCA may exhibit patterns that are too noisy to be physically meaningful when pp is large relative to nn. To obtain more precise estimates of eigenimages, we propose a regularization approach incorporating smoothness and sparseness of eigenimages, while accounting for their orthogonality. Our method allows data taken at irregularly spaced or sparse locations. In addition, the resulting optimization problem can be solved using the alternating direction method of multipliers, which is easy to implement, and applicable to a large spatial dataset. Furthermore, the estimated eigenfunctions provide a natural basis for representing the underlying spatial process in a spatial random-effects model, from which spatial covariance function estimation and spatial prediction can be efficiently performed using a regularized fixed-rank kriging method. Finally, the effectiveness of the proposed method is demonstrated by several numerical example

    Visible-light promoted atom transfer radical addition-elimination (ATRE) reaction for the synthesis of fluoroalkylated alkenes using DMA as electron-donor

    Get PDF
    Here, we describe a mild, catalyst-free and operationally-simple strategy for the direct fluoroalkylation of olefins driven by the photochemical activity of an electron donor-acceptor (EDA) complex between DMA and fluoroalkyl iodides. The significant advantages of this photochemical transformation are high efficiency, excellent functional group tolerance, and synthetic simplicity, thus providing a facile route for further application in pharmaceuticals and life sciences

    Bayes-Optimal Joint Channel-and-Data Estimation for Massive MIMO with Low-Precision ADCs

    Get PDF
    This paper considers a multiple-input multiple-output (MIMO) receiver with very low-precision analog-to-digital convertors (ADCs) with the goal of developing massive MIMO antenna systems that require minimal cost and power. Previous studies demonstrated that the training duration should be {\em relatively long} to obtain acceptable channel state information. To address this requirement, we adopt a joint channel-and-data (JCD) estimation method based on Bayes-optimal inference. This method yields minimal mean square errors with respect to the channels and payload data. We develop a Bayes-optimal JCD estimator using a recent technique based on approximate message passing. We then present an analytical framework to study the theoretical performance of the estimator in the large-system limit. Simulation results confirm our analytical results, which allow the efficient evaluation of the performance of quantized massive MIMO systems and provide insights into effective system design.Comment: accepted in IEEE Transactions on Signal Processin
    • …
    corecore