2,141 research outputs found
Multistage Adaptive Testing of Sparse Signals
Multistage design has been used in a wide range of scientific fields. By
allocating sensing resources adaptively, one can effectively eliminate null
locations and localize signals with a smaller study budget. We formulate a
decision-theoretic framework for simultaneous multi- stage adaptive testing and
study how to minimize the total number of measurements while meeting
pre-specified constraints on both the false positive rate (FPR) and missed
discovery rate (MDR). The new procedure, which effectively pools information
across individual tests using a simultaneous multistage adaptive ranking and
thresholding (SMART) approach, can achieve precise error rates control and lead
to great savings in total study costs. Numerical studies confirm the
effectiveness of SMART for FPR and MDR control and show that it achieves
substantial power gain over existing methods. The SMART procedure is
demonstrated through the analysis of high-throughput screening data and spatial
imaging data.Comment: 34 pages, 3 figure
Numerical study of the small scale structures in Boussinesq convection
Two-dimensional Boussinesq convection is studied numerically using two different methods: a filtered pseudospectral method and a high order accurate Essentially Nonoscillatory (ENO) scheme. The issue whether finite time singularity occurs for initially smooth flows is investigated. The numerical results suggest that the collapse of the bubble cap is unlikely to occur in resolved calculations. The strain rate corresponding to the intensification of the density gradient across the front saturates at the bubble cap. We also found that the cascade of energy to small scales is dominated by the formulation of thin and sharp fronts across which density jumps
Effective equations and the inverse cascade theory for Kolmogorov flows
We study the two dimensional Kolmogorov flows in the limit as the forcing frequency goes to infinity. Direct numerical simulation indicates that the low frequency energy spectrum evolves to a universal kappa (exp -4) decay law. We derive effective equations governing the behavior of the large scale flow quantities. We then present numerical evidence that with smooth initial data, the solution to the effective equation develops a kappa (exp -4) type singularity at a finite time. This gives a convenient explanation for the kappa (exp -4) decay law exhibited by the original Kolmogorov flows
A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow
High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth order central differences through Fast Fourier Transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large-scale features, such as the total circulation around the roll-up region, are adequately resolved
Recommended from our members
Covariate-assisted ranking and screening for large-scale two-sample inference
Two-sample multiple testing has a wide range of applications. The conventionalpractice first reduces the original observations to a vector of p-values and then chooses a cutoffto adjust for multiplicity. However, this data reduction step could cause significant loss ofinformation and thus lead to suboptimal testing procedures.We introduce a new framework fortwo-sample multiple testing by incorporating a carefully constructed auxiliary variable in inferenceto improve the power. A data-driven multiple-testing procedure is developed by employinga covariate-assisted ranking and screening (CARS) approach that optimally combines the informationfrom both the primary and the auxiliary variables. The proposed CARS procedureis shown to be asymptotically valid and optimal for false discovery rate control. The procedureis implemented in the R package CARS. Numerical results confirm the effectiveness of CARSin false discovery rate control and show that it achieves substantial power gain over existingmethods. CARS is also illustrated through an application to the analysis of a satellite imagingdata set for supernova detection
- …