216 research outputs found

    On the sphericity test with large-dimensional observations

    Get PDF
    In this paper, we propose corrections to the likelihood ratio test and John's test for sphericity in large-dimensions. New formulas for the limiting parameters in the CLT for linear spectral statistics of sample covariance matrices with general fourth moments are first established. Using these formulas, we derive the asymptotic distribution of the two proposed test statistics under the null. These asymptotics are valid for general population, i.e. not necessarily Gaussian, provided a finite fourth-moment. Extensive Monte-Carlo experiments are conducted to assess the quality of these tests with a comparison to several existing methods from the literature. Moreover, we also obtain their asymptotic power functions under the alternative of a spiked population model as a specific alternative.Comment: 37 pages, 3 figure

    On singular values distribution of a large auto-covariance matrix in the ultra-dimensional regime

    Get PDF
    Let (εt)t>0(\varepsilon_{t})_{t>0} be a sequence of independent real random vectors of pp-dimension and let XT=∑t=s+1s+Tεtεt−sT/TX_T=\sum_{t=s+1}^{s+T}\varepsilon_t\varepsilon^T_{t-s}/T be the lag-ss (ss is a fixed positive integer) auto-covariance matrix of εt\varepsilon_t. This paper investigates the limiting behavior of the singular values of XTX_T under the so-called {\em ultra-dimensional regime} where p→∞p\to\infty and T→∞T\to\infty in a related way such that p/T→0p/T\to 0. First, we show that the singular value distribution of XTX_T after a suitable normalization converges to a nonrandom limit GG (quarter law) under the forth-moment condition. Second, we establish the convergence of its largest singular value to the right edge of GG. Both results are derived using the moment method.Comment: 32 pages, 2 figure

    Identifying the number of factors from singular values of a large sample auto-covariance matrix

    Get PDF
    Identifying the number of factors in a high-dimensional factor model has attracted much attention in recent years and a general solution to the problem is still lacking. A promising ratio estimator based on the singular values of the lagged autocovariance matrix has been recently proposed in the literature and is shown to have a good performance under some specific assumption on the strength of the factors. Inspired by this ratio estimator and as a first main contribution, this paper proposes a complete theory of such sample singular values for both the factor part and the noise part under the large-dimensional scheme where the dimension and the sample size proportionally grow to infinity. In particular, we provide the exact description of the phase transition phenomenon that determines whether a factor is strong enough to be detected with the observed sample singular values. Based on these findings and as a second main contribution of the paper, we propose a new estimator of the number of factors which is strongly consistent for the detection of all significant factors (which are the only theoretically detectable ones). In particular, factors are assumed to have the minimum strength above the phase transition boundary which is of the order of a constant; they are thus not required to grow to infinity together with the dimension (as assumed in most of the existing papers on high-dimensional factor models). Empirical Monte-Carlo study as well as the analysis of stock returns data attest a very good performance of the proposed estimator. In all the tested cases, the new estimator largely outperforms the existing estimator using the same ratios of singular values.Comment: This is a largely revised version of the previous manuscript (v1 & v2

    Improvement of Machine Learning Models for Time Series Forecasting in Radial-Axial Ring Rolling through Transfer Learning

    Get PDF
    Due to the increasing computing power and corresponding algorithms, the use of machine learning (ML) in production technology has risen sharply in the age of Industry 4.0. Data availability in particular is fundamental at this point and a prerequisite for the successful implementation of a ML application. If the quantity or quality of data is insufficient for a given problem, techniques such as data augmentation, the use of synthetic data and transfer learning of similar data sets can provide a remedy. In this paper, the concept of transfer learning is applied in the field of radial-axial ring rolling (rarr) and implemented using the example of time series prediction of the outer diameter over the process time. Radial-axial ring rolling is a hot forming process and is used for seamless ring production
    • …
    corecore