82 research outputs found
Action recognition from RGB-D data
In recent years, action recognition based on RGB-D data has attracted increasing attention. Different from traditional 2D action recognition, RGB-D data contains extra depth and skeleton modalities. Different modalities have their own characteristics. This thesis presents seven novel methods to take advantages of the three modalities for action recognition.
First, effective handcrafted features are designed and frequent pattern mining method is employed to mine the most discriminative, representative and nonredundant features for skeleton-based action recognition. Second, to take advantages of powerful Convolutional Neural Networks (ConvNets), it is proposed to represent spatio-temporal information carried in 3D skeleton sequences in three 2D images by encoding the joint trajectories and their dynamics into color distribution in the images, and ConvNets are adopted to learn the discriminative features for human action recognition. Third, for depth-based action recognition, three strategies of data augmentation are proposed to apply ConvNets to small training datasets. Forth, to take full advantage of the 3D structural information offered in the depth modality and its being insensitive to illumination variations, three simple, compact yet effective images-based representations are proposed and ConvNets are adopted for feature extraction and classification. However, both of previous two methods are sensitive to noise and could not differentiate well fine-grained actions. Fifth, it is proposed to represent a depth map sequence into three pairs of structured dynamic images at body, part and joint levels respectively through bidirectional rank pooling to deal with the issue. The structured dynamic image preserves the spatial-temporal information, enhances the structure information across both body parts/joints and different temporal scales, and takes advantages of ConvNets for action recognition. Sixth, it is proposed to extract and use scene flow for action recognition from RGB and depth data. Last, to exploit the joint information in multi-modal features arising from heterogeneous sources (RGB, depth), it is proposed to cooperatively train a single ConvNet (referred to as c-ConvNet) on both RGB features and depth features, and deeply aggregate the two modalities to achieve robust action recognition
Investigation of Different Skeleton Features for CNN-based 3D Action Recognition
Deep learning techniques are being used in skeleton based action recognition
tasks and outstanding performance has been reported. Compared with RNN based
methods which tend to overemphasize temporal information, CNN-based approaches
can jointly capture spatio-temporal information from texture color images
encoded from skeleton sequences. There are several skeleton-based features that
have proven effective in RNN-based and handcrafted-feature-based methods.
However, it remains unknown whether they are suitable for CNN-based approaches.
This paper proposes to encode five spatial skeleton features into images with
different encoding methods. In addition, the performance implication of
different joints used for feature extraction is studied. The proposed method
achieved state-of-the-art performance on NTU RGB+D dataset for 3D human action
analysis. An accuracy of 75.32\% was achieved in Large Scale 3D Human Activity
Analysis Challenge in Depth Videos
Mining Mid-level Features for Action Recognition Based on Effective Skeleton Representation
Recently, mid-level features have shown promising performance in computer
vision. Mid-level features learned by incorporating class-level information are
potentially more discriminative than traditional low-level local features. In
this paper, an effective method is proposed to extract mid-level features from
Kinect skeletons for 3D human action recognition. Firstly, the orientations of
limbs connected by two skeleton joints are computed and each orientation is
encoded into one of the 27 states indicating the spatial relationship of the
joints. Secondly, limbs are combined into parts and the limb's states are
mapped into part states. Finally, frequent pattern mining is employed to mine
the most frequent and relevant (discriminative, representative and
non-redundant) states of parts in continuous several frames. These parts are
referred to as Frequent Local Parts or FLPs. The FLPs allow us to build
powerful bag-of-FLP-based action representation. This new representation yields
state-of-the-art results on MSR DailyActivity3D and MSR ActionPairs3D
Large-scale Isolated Gesture Recognition Using Convolutional Neural Networks
This paper proposes three simple, compact yet effective representations of
depth sequences, referred to respectively as Dynamic Depth Images (DDI),
Dynamic Depth Normal Images (DDNI) and Dynamic Depth Motion Normal Images
(DDMNI). These dynamic images are constructed from a sequence of depth maps
using bidirectional rank pooling to effectively capture the spatial-temporal
information. Such image-based representations enable us to fine-tune the
existing ConvNets models trained on image data for classification of depth
sequences, without introducing large parameters to learn. Upon the proposed
representations, a convolutional Neural networks (ConvNets) based method is
developed for gesture recognition and evaluated on the Large-scale Isolated
Gesture Recognition at the ChaLearn Looking at People (LAP) challenge 2016. The
method achieved 55.57\% classification accuracy and ranked place in
this challenge but was very close to the best performance even though we only
used depth data.Comment: arXiv admin note: text overlap with arXiv:1608.0633
Cooperative Training of Deep Aggregation Networks for RGB-D Action Recognition
A novel deep neural network training paradigm that exploits the conjoint
information in multiple heterogeneous sources is proposed. Specifically, in a
RGB-D based action recognition task, it cooperatively trains a single
convolutional neural network (named c-ConvNet) on both RGB visual features and
depth features, and deeply aggregates the two kinds of features for action
recognition. Differently from the conventional ConvNet that learns the deep
separable features for homogeneous modality-based classification with only one
softmax loss function, the c-ConvNet enhances the discriminative power of the
deeply learned features and weakens the undesired modality discrepancy by
jointly optimizing a ranking loss and a softmax loss for both homogeneous and
heterogeneous modalities. The ranking loss consists of intra-modality and
cross-modality triplet losses, and it reduces both the intra-modality and
cross-modality feature variations. Furthermore, the correlations between RGB
and depth data are embedded in the c-ConvNet, and can be retrieved by either of
the modalities and contribute to the recognition in the case even only one of
the modalities is available. The proposed method was extensively evaluated on
two large RGB-D action recognition datasets, ChaLearn LAP IsoGD and NTU RGB+D
datasets, and one small dataset, SYSU 3D HOI, and achieved state-of-the-art
results
RGB-D-based Action Recognition Datasets: A Survey
Human action recognition from RGB-D (Red, Green, Blue and Depth) data has
attracted increasing attention since the first work reported in 2010. Over this
period, many benchmark datasets have been created to facilitate the development
and evaluation of new algorithms. This raises the question of which dataset to
select and how to use it in providing a fair and objective comparative
evaluation against state-of-the-art methods. To address this issue, this paper
provides a comprehensive review of the most commonly used action recognition
related RGB-D video datasets, including 27 single-view datasets, 10 multi-view
datasets, and 7 multi-person datasets. The detailed information and analysis of
these datasets is a useful resource in guiding insightful selection of datasets
for future research. In addition, the issues with current algorithm evaluation
vis-\'{a}-vis limitations of the available datasets and evaluation protocols
are also highlighted; resulting in a number of recommendations for collection
of new datasets and use of evaluation protocols
Large-scale Continuous Gesture Recognition Using Convolutional Neural Networks
This paper addresses the problem of continuous gesture recognition from
sequences of depth maps using convolutional neutral networks (ConvNets). The
proposed method first segments individual gestures from a depth sequence based
on quantity of movement (QOM). For each segmented gesture, an Improved Depth
Motion Map (IDMM), which converts the depth sequence into one image, is
constructed and fed to a ConvNet for recognition. The IDMM effectively encodes
both spatial and temporal information and allows the fine-tuning with existing
ConvNet models for classification without introducing millions of parameters to
learn. The proposed method is evaluated on the Large-scale Continuous Gesture
Recognition of the ChaLearn Looking at People (LAP) challenge 2016. It achieved
the performance of 0.2655 (Mean Jaccard Index) and ranked place in
this challenge
Action recognition based on joint trajectory maps using convolutional neural networks
Recently, Convolutional Neural Networks (ConvNets) have shown promising performances in many computer vision tasks, especially image-based recognition. How to effectively use ConvNets for video-based recognition is still an open problem. In this paper, we propose a compact, effective yet simple method to encode spatiotemporal information carried in 3D skeleton sequences into multiple 2D images, referred to as Joint Trajectory Maps (JTM), and ConvNets are adopted to exploit the discriminative features for realtime human action recognition. The proposed method has been evaluated on three public benchmarks, i.e., MSRC-12 Kinect gesture dataset (MSRC-12), G3D dataset and UTD multimodal human action dataset (UTD-MHAD) and achieved the state-of-the-art results
- …