155 research outputs found

    Evolutionary algorithms in dynamic environments

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Evolutionary algorithms (EAs) are widely and often used for solving stationary optimization problems where the fitness landscape or objective function does not change during the course of computation. However, the environments of real world optimization problems may fluctuate or change sharply. If the optimization problem is dynamic, the goal is no longer to find the extrema, but to track their progression through the search space as closely as possible. All kinds of approaches that have been proposed to make EAs suitable for the dynamic environments are surveyed, such as increasing diversity, maintaining diversity, memory based approaches, multi-population approaches and so on

    Genetic algorithm and neural network hybrid approach for job-shop scheduling

    Get PDF
    This paper proposes a genetic algorithm (GA) and constraint satisfaction adaptive neural network (CSANN) hybrid approach for job-shop scheduling problems. In the hybrid approach, GA is used to iterate for searching optimal solutions, CSANN is used to obtain feasible solutions during the iteration of genetic algorithm. Simulations have shown the valid performance of the proposed hybrid approach for job-shop scheduling with respect to the quality of solutions and the speed of calculation

    A memetic particle swarm optimisation algorithm for dynamic multi-modal optimisation problems

    Get PDF
    Copyright @ 2011 Taylor & Francis.Many real-world optimisation problems are both dynamic and multi-modal, which require an optimisation algorithm not only to find as many optima under a specific environment as possible, but also to track their moving trajectory over dynamic environments. To address this requirement, this article investigates a memetic computing approach based on particle swarm optimisation for dynamic multi-modal optimisation problems (DMMOPs). Within the framework of the proposed algorithm, a new speciation method is employed to locate and track multiple peaks and an adaptive local search method is also hybridised to accelerate the exploitation of species generated by the speciation method. In addition, a memory-based re-initialisation scheme is introduced into the proposed algorithm in order to further enhance its performance in dynamic multi-modal environments. Based on the moving peaks benchmark problems, experiments are carried out to investigate the performance of the proposed algorithm in comparison with several state-of-the-art algorithms taken from the literature. The experimental results show the efficiency of the proposed algorithm for DMMOPs.This work was supported by the Key Program of National Natural Science Foundation (NNSF) of China under Grant no. 70931001, the Funds for Creative Research Groups of China under Grant no. 71021061, the National Natural Science Foundation (NNSF) of China under Grant 71001018, Grant no. 61004121 and Grant no. 70801012 and the Fundamental Research Funds for the Central Universities Grant no. N090404020, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant no. EP/E060722/01 and Grant EP/E060722/02, and the Hong Kong Polytechnic University under Grant G-YH60

    Risk Evaluation for Virtual Enterprise

    Get PDF
    Virtual Enterprise is the potential mode of enterprise in the future. The risk management for virtual enterprise is the new research area recently. In virtual enterprise, the enterprise operation is always organized by project mode and there is always less historical data and there are many uncertain factors. Hence, in this paper, the fuzzy synthetic evaluation model for the risk evaluation of virtual enterprise is established focus on the project mode and uncertain characteristics of virtual enterprise. In the 5 levels model, the goal and sub-goal of the enterprise, the process of the project, as well as the risk event and risk factors are considered. The case study suggests that the method is useful

    Force-imitated particle swarm optimization using the near-neighbor effect for locating multiple optima

    Get PDF
    Copyright @ Elsevier Inc. All rights reserved.Multimodal optimization problems pose a great challenge of locating multiple optima simultaneously in the search space to the particle swarm optimization (PSO) community. In this paper, the motion principle of particles in PSO is extended by using the near-neighbor effect in mechanical theory, which is a universal phenomenon in nature and society. In the proposed near-neighbor effect based force-imitated PSO (NN-FPSO) algorithm, each particle explores the promising regions where it resides under the composite forces produced by the “near-neighbor attractor” and “near-neighbor repeller”, which are selected from the set of memorized personal best positions and the current swarm based on the principles of “superior-and-nearer” and “inferior-and-nearer”, respectively. These two forces pull and push a particle to search for the nearby optimum. Hence, particles can simultaneously locate multiple optima quickly and precisely. Experiments are carried out to investigate the performance of NN-FPSO in comparison with a number of state-of-the-art PSO algorithms for locating multiple optima over a series of multimodal benchmark test functions. The experimental results indicate that the proposed NN-FPSO algorithm can efficiently locate multiple optima in multimodal fitness landscapes.This work was supported in part by the Key Program of National Natural Science Foundation (NNSF) of China under Grant 70931001, Grant 70771021, and Grant 70721001, the National Natural Science Foundation (NNSF) of China for Youth under Grant 61004121, Grant 70771021, the Science Fund for Creative Research Group of NNSF of China under Grant 60821063, the PhD Programs Foundation of Ministry of Education of China under Grant 200801450008, and in part by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1 and Grant EP/E060722/2

    A new adaptive neural network and heuristics hybrid approach for job-shop scheduling

    Get PDF
    Copyright @ 2001 Elsevier Science LtdA new adaptive neural network and heuristics hybrid approach for job-shop scheduling is presented. The neural network has the property of adapting its connection weights and biases of neural units while solving the feasible solution. Two heuristics are presented, which can be combined with the neural network. One heuristic is used to accelerate the solving process of the neural network and guarantee its convergence, the other heuristic is used to obtain non-delay schedules from the feasible solutions gained by the neural network. Computer simulations have shown that the proposed hybrid approach is of high speed and efficiency. The strategy for solving practical job-shop scheduling problems is provided.This work is supported by the National Nature Science Foundation (No. 69684005) and National High -Tech Program of P. R. China (No. 863-511-9609-003)

    Particle swarm optimization with a leader and followers

    Get PDF
    Referring to the flight mechanism of wild goose flock, we propose a novel version of Particle Swarm Optimization (PSO) with a leader and followers. It is referred to as Goose Team Optimization (GTO). The basic features of goose team flight such as goose role division, parallel principle, aggregate principle and separate principle are implemented in the recommended algorithm. In GTO, a team is formed by the particles with a leader and some followers. The role of the leader is to determine the search direction. The followers decide their flying modes according to their distances to the leader individually. Thus, a wide area can be explored and the particle collision can be really avoided. When GTO is applied to four benchmark examples of complex nonlinear functions, it has a better computation performance than the standard PSO

    Two-dose-level confirmatory study of the pharmacokinetics and tolerability of everolimus in Chinese patients with advanced solid tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This phase I, randomized, multicenter, open-label study investigated the pharmacokinetics, safety, and efficacy of the oral mammalian target of rapamycin inhibitor everolimus in Chinese patients with advanced solid tumors.</p> <p>Methods</p> <p>A total of 24 patients with advanced breast cancer (n = 6), gastric cancer (n = 6), non-small cell lung cancer (n = 6), or renal cell carcinoma (n = 6) who were refractory to/unsuitable for standard therapy were randomized 1:1 to oral everolimus 5 or 10 mg/day. Primary end points were pharmacokinetic parameters and safety and tolerability. Pharmacokinetic 24-h profiles were measured on day 15; trough level was measured on days 2, 8, 15, 16, and 22. Tolerability was assessed continuously. This final analysis was performed after all patients had received 6 months of study drug or had discontinued.</p> <p>Results</p> <p>Everolimus was absorbed rapidly; median T<sub>max </sub>was 3 h (range, 1-4) and 2 h (range, 0.9-6) in the 5 and 10 mg/day groups, respectively. Pharmacokinetic parameters increased dose proportionally from the 5 and 10 mg/day doses. Steady-state levels were achieved by day 8 or earlier. The most common adverse events suspected to be related to everolimus therapy were increased blood glucose (16.7% and 41.7%) and fatigue (16.7% and 33.3%) in the everolimus 5 and 10 mg/day dose cohorts, respectively. Best tumor response was stable disease in 10 (83%) and 6 (50%) patients in the 5 and 10 mg/day groups, respectively.</p> <p>Conclusions</p> <p>Everolimus 5 or 10 mg/day was well tolerated in Chinese patients with advanced solid tumors. The observed safety and pharmacokinetic profile of everolimus from this study were consistent with previous studies.</p> <p>Trial registration</p> <p>Chinese Health Authorities 2008L09346</p

    A particle swarm optimization based memetic algorithm for dynamic optimization problems

    Get PDF
    Copyright @ Springer Science + Business Media B.V. 2010.Recently, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are dynamic. This paper investigates a particle swarm optimization (PSO) based memetic algorithm that hybridizes PSO with a local search technique for dynamic optimization problems. Within the framework of the proposed algorithm, a local version of PSO with a ring-shape topology structure is used as the global search operator and a fuzzy cognition local search method is proposed as the local search technique. In addition, a self-organized random immigrants scheme is extended into our proposed algorithm in order to further enhance its exploration capacity for new peaks in the search space. Experimental study over the moving peaks benchmark problem shows that the proposed PSO-based memetic algorithm is robust and adaptable in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant No. 70431003 and Grant No. 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, the National Support Plan of China under Grant No. 2006BAH02A09 and the Ministry of Education, science, and Technology in Korea through the Second-Phase of Brain Korea 21 Project in 2009, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems

    Get PDF
    Copyright @ Springer-Verlag 2008Dynamic optimization problems challenge traditional evolutionary algorithms seriously since they, once converged, cannot adapt quickly to environmental changes. This paper investigates the application of memetic algorithms, a class of hybrid evolutionary algorithms, for dynamic optimization problems. An adaptive hill climbing method is proposed as the local search technique in the framework of memetic algorithms, which combines the features of greedy crossover-based hill climbing and steepest mutation-based hill climbing. In order to address the convergence problem, two diversity maintaining methods, called adaptive dual mapping and triggered random immigrants, respectively, are also introduced into the proposed memetic algorithm for dynamic optimization problems. Based on a series of dynamic problems generated from several stationary benchmark problems, experiments are carried out to investigate the performance of the proposed memetic algorithm in comparison with some peer evolutionary algorithms. The experimental results show the efficiency of the proposed memetic algorithm in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant Nos. 70431003 and 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, and the National Support Plan of China under Grant No. 2006BAH02A09 and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01
    corecore